Nano Research

, Volume 3, Issue 10, pp 701–705 | Cite as

TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials

  • Yongye Liang
  • Hailiang Wang
  • Hernan Sanchez Casalongue
  • Zhuo Chen
  • Hongjie Dai
Open Access
Research Article

Abstract

A graphene/TiO2 nanocrystals hybrid has been successfully prepared by directly growing TiO2 nanocrystals on graphene oxide (GO) sheets. The direct growth of the nanocrystals on GO sheets was achieved by a two-step method, in which TiO2 was first coated on GO sheets by hydrolysis and crystallized into anatase nanocrystals by hydrothermal treatment in the second step. Slow hydrolysis induced by the use of EtOH/H2O mixed solvent and addition of H2SO4 facilitates the selective growth of TiO2 on GO and suppresses growth of free TiO2 in solution. The method offers easy access to the GO/TiO2 nanocrystals hybrid with a uniform coating and strong interactions between TiO2 and the underlying GO sheets. The strong coupling gives advanced hybrid materials with various applications including photocatalysis. The prepared graphene/TiO2 nanocrystals hybrid has superior photocatalytic activity to other TiO2 materials in the degradation of rhodamine B, showing an impressive three-fold photocatalytic enhancement over P25. It is expected that the hybrid material could also be promising for various other applications including lithium ion batteries, where strong electrical coupling to TiO2 nanoparticles is essential.

Keywords

Graphene titanium oxide photocatalyst hydrolysis 

Supplementary material

12274_2010_33_MOESM1_ESM.pdf (565 kb)
Supplementary material, approximately 564 KB.

References

  1. [1]
    Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.CrossRefPubMedGoogle Scholar
  2. [2]
    Si, Y. C.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.CrossRefGoogle Scholar
  3. [3]
    Lee, D. H.; Kim, J. E.; Han, T. H.; Hwang, J. W.; Jeon, S.; Choi, S. Y.; Hong, S. H.; Lee, W. J.; Ruoff, R. S.; Kim, S. O. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 2010, 22, 1247–1252.CrossRefPubMedGoogle Scholar
  4. [4]
    Wang, H. L.; Sanchez Casalongue, H.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.CrossRefPubMedGoogle Scholar
  5. [5]
    Yoo, E. J.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt sub-nanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.CrossRefGoogle Scholar
  7. [7]
    Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.CrossRefPubMedGoogle Scholar
  8. [8]
    Wang, D. H.; Kou, R.; Choi, D. W.; Yang, Z. G.; Nie, Z. M.; Li, J.; Saraf, L. V.; Hu, D. H.; Zhang, J. G.; Graff, G. L.; Liu, J.; Pope, M. A.; Aksay, I. A. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electro-chemical energy storage. ACS Nano, 2010, 4, 1587–1595.CrossRefPubMedGoogle Scholar
  9. [9]
    Wang, X. R.; Tabakman, S. M.; Dai, H. J. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152–8153.CrossRefPubMedGoogle Scholar
  10. [10]
    Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nano-crystals. Nano Res. 2009, 2, 192–200.CrossRefGoogle Scholar
  11. [11]
    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.CrossRefPubMedGoogle Scholar
  12. [12]
    Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 2009, 3, 907–914.CrossRefPubMedGoogle Scholar
  13. [13]
    Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.CrossRefPubMedGoogle Scholar
  14. [14]
    Yang, N. L.; Zhai, J.; Wang, D.; Chen, Y. S.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano, 2010, 4, 887–894.CrossRefPubMedGoogle Scholar
  15. [15]
    Hummer, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  16. [16]
    Wang, H. L.; Wang, X. R.; Li, X. L.; Dai, H. J. Chemical self-assembly of graphene sheets. Nano Res. 2009, 2, 336–342.CrossRefGoogle Scholar
  17. [17]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefPubMedGoogle Scholar
  18. [18]
    Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.CrossRefPubMedGoogle Scholar
  19. [19]
    Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011.CrossRefPubMedGoogle Scholar
  20. [20]
    Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.CrossRefGoogle Scholar
  21. [21]
    Wang, X. H.; Li, J. G.; Kamiyama, H.; Moriyoshi, Y.; Ishigaki, T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B, 2006, 110, 6804–6809.CrossRefPubMedGoogle Scholar
  22. [22]
    Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal. B 2005, 56, 305–312.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yongye Liang
    • 1
  • Hailiang Wang
    • 1
  • Hernan Sanchez Casalongue
    • 1
  • Zhuo Chen
    • 1
  • Hongjie Dai
    • 1
  1. 1.Department of Chemistry and Laboratory for Advanced MaterialsStanford UniversityStanfordUSA

Personalised recommendations