Nano Research

, Volume 3, Issue 10, pp 694–700 | Cite as

Graphene-like bilayer hexagonal silicon polymorph

Open Access
Research Article


We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-two-dimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap. Open image in new window


Bilayer hexagonal silicon slit pore semimetal two-dimensional polymorph 


  1. [1]
    Harrison, P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics; Wiley: New York, 2000.Google Scholar
  2. [2]
    Jank, W.; Hafner, J. Structural and electronic properties of the liquid polyvalent elements: The group-IV elements Si, Ge, Sn, and Pb. Phys. Rev. B 1990, 41, 1497–1515.CrossRefADSGoogle Scholar
  3. [3]
    Jakse, N.; Henne, L.; Price, D. L.; Krishnan, S.; Key, T.; Artacho, E.; Glorieux, B.; Pasturel, A.; Saboungi, M. L. Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 2003, 83, 4734–4736.CrossRefADSGoogle Scholar
  4. [4]
    Sastry, S.; Angell, C. A.; Liquid-liquid phase transition in supercooled silicon. Nat. Mater. 2003, 2, 739–743.CrossRefADSPubMedGoogle Scholar
  5. [5]
    Bai, J.; Zeng, X. C.; Tanaka, H.; Zeng, J. Y. Metallic single-walled silicon nanotubes. Proc. Natl. Acad. Sci. USA 2004, 101, 2664–2668.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Koga, K.; Gao, G. T.; Tanaka, H.; Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805.CrossRefADSPubMedGoogle Scholar
  7. [7]
    Ghosh, S.; Ramanathan, K. V.; Sood, A. K. Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 2004, 65, 678–684.CrossRefADSGoogle Scholar
  8. [8]
    Kolesnikov, A. I.; Zanotti, J. M.; Loong, K.; Thyagarajan, P.; Morsvsky, A. P.; Loutfy, R. O.; Burnham, C. J. Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement. Phys. Rev. Lett. 2004, 93, 035503.CrossRefADSPubMedGoogle Scholar
  9. [9]
    Maniwa, Y.; Kataura, H.; Abe, M.; Udaka, A.; Suzuki, S.; Achiba, Y.; Kira, H.; Matsuda, K.; Kadowaki, H.; Okabe, Y. Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 2005, 401, 534–538.CrossRefADSGoogle Scholar
  10. [10]
    Byl, O.; Liu, J. C.; Wang, Y.; Yim, W. L; Johnson, J. K.; Yates, J. T. Jr. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 12090–12097.CrossRefPubMedGoogle Scholar
  11. [11]
    Saranin, A. A.; Zotov, A. V.; Kotlyar, V. G.; Kasyanova, T. V.; Utas, O. A.; Okado, H.; Katayama, M.; Oura, K. Ordered arrays of Be-encapsulated Si nanotubes on Si(111) surface. Nano. Lett. 2004, 4, 1469–1473.CrossRefADSGoogle Scholar
  12. [12]
    Koga, K.; Zeng, X. C.; Tanaka, H. Freezing of confined water: A bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 1997, 79, 5262–5265.CrossRefADSGoogle Scholar
  13. [13]
    Koga, K.; Tanaka, H.; Zeng, X. C. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 2000, 408, 564–567.CrossRefADSPubMedGoogle Scholar
  14. [14]
    Bai, J.; Zeng, X. C.; Koga, K.; Tanaka, H. Formation of quasi-two-dimensional bilayer ice in hydrophobic slit: A possible candidate for ice XIII? Mol. Simul. 2003, 29, 619–626.CrossRefGoogle Scholar
  15. [15]
    Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.CrossRefADSGoogle Scholar
  16. [16]
    Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.CrossRefADSGoogle Scholar
  17. [17]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefADSGoogle Scholar
  18. [18]
    Bai, J. Novel Low Dimensional Silicon and Water Nanostructures. Ph.D. Dissertation, University of Nebraska-Lincoln, Lincoln, NE, USA, 2004.Google Scholar
  19. [19]
    Stillinger, F. H.; Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 1985, 31, 5262–5271.CrossRefADSGoogle Scholar
  20. [20]
    Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568.CrossRefADSGoogle Scholar
  21. [21]
  22. [22]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefADSPubMedGoogle Scholar
  23. [23]
    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.CrossRefADSGoogle Scholar
  24. [24]
    Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.CrossRefADSPubMedGoogle Scholar
  25. [25]
    Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.CrossRefADSGoogle Scholar
  26. [26]
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.CrossRefADSGoogle Scholar
  27. [27]
    Delly, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756.CrossRefADSGoogle Scholar
  28. [28]
  29. [29]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefADSPubMedGoogle Scholar
  30. [30]
    Katsnelson, M. L. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.CrossRefGoogle Scholar
  31. [31]
    Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 1984, 53, 2449–2452.CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 1984, 61, 2015–2018.CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.; Nonaka, T.; Seno, Y.; Nakamura, H. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem. Int. Ed. 2006, 45, 6303–6306.CrossRefGoogle Scholar
  34. [34]
    Cahangirov, S.; Topsakal, M.; Akturk, E.; Yahin, H.; Ciraci, S. Honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossRefADSPubMedGoogle Scholar
  35. [35]
    Lebegue, S.; Eriksson, O. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 2009, 79, 115409.CrossRefADSGoogle Scholar
  36. [36]
    Wang, S. Studies of physical and chemical properties of two-dimensional hexagonal crystals by first-principles calculation. J. Phys. Soc. Japan, 2010, 79, 064602.CrossRefADSGoogle Scholar
  37. [37]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    Ackland, G. J.; Warren, M. C.; Clark, S.J. Practical methods in ab initio lattice dynamics. J. Phys.: Condens. Matter. 1997, 9, 7861–7872.CrossRefADSGoogle Scholar
  39. [39]
    Schulte-Fischedick, J.; Zern, A.; Mayer, J.; Rühle, M.; Frieß, M.; Krenkel, W. The morphology of silicon carbide in C/C-SiC composites. Mater. Sci. Eng. A 2002, 332, 146–152.CrossRefGoogle Scholar
  40. [40]
    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R. Reactive infiltration of silicon melt through microporous amorphous carbon preforms. Metall. Mater. Trans. B 1999, 30, 933–944.CrossRefGoogle Scholar
  41. [41]
    Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnalek, Z.; Kay, B. D. No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 2009, 131, 12838–12844.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of ChemistryOkayama UniversityOkayamaJapan

Personalised recommendations