Nano Research

, Volume 3, Issue 8, pp 604–611 | Cite as

Bis(phthalocyaninato)yttrium grown on Au(111): Electronic structure of a single molecule and the stability of two-dimensional films investigated by scanning tunneling microscopy/spectroscopy at 4.8 K

Open Access
Research Article

Abstract

Scanning tunneling microscopy/spectroscopy (STM/STS) at 4.8 K has been used to examine the growth of a double-decker bis(phthalocyaninato)yttrium (YPc2) molecule on a reconstructed Au(111) substrate. Local differential conductance spectra (dI/dV) of a single YPc2 molecule allow the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) to be identified. Furthermore, lateral distributions of the local density of states (LDOS) have also been obtained by dI/dV mapping and confirmed by first principles simulations. These electronic feature mappings and theoretical calculations provide a basis for understanding the unique STM morphology of YPc2, which is usually imaged as an eight-lobed structure. In addition, we demonstrate that bias-dependent STM morphologies and simultaneous dI/dV maps can provide a way of understanding the stability of two-dimensional YPc2 films.

Keywords

Scanning tunneling microscopy/spectroscopy (STM/STS) phthalocyanine electronic structure 

References

  1. [1]
    Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Cracium, M. F.; Rogge, S.; Morpurgo, A. F. Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped metal-phthalocyanine compounds. J. Am. Chem. Soc. 2005, 127, 12210–12211.CrossRefGoogle Scholar
  3. [3]
    Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J. M.; Giovanelli, L.; Lay, G. L. Physics of ultra-thin phthalocyanine films on semiconductors. Prog. Surf. Sci. 2004, 77, 139–170.CrossRefADSGoogle Scholar
  4. [4]
    Lippel, P. H.; Wilson, R. J.; Miller, M. D.; Woll, Ch.; Chiang, S. High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 1989, 62, 171–174.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Hipps, K. W.; Lu, X.; Wang, X. D.; Mazur, U. Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J. Phys. Chem. 1996, 100, 11207–11210.CrossRefGoogle Scholar
  6. [6]
    Lu, X.; Hipps, K. W.; Wang, X. D.; Mazur, U. Scanning tunneling microscopy of metal phthalocyanines: d7 and d9 cases. J. Am. Chem. Soc. 1996, 118, 7197–7202.CrossRefGoogle Scholar
  7. [7]
    Chizhov, I.; Scoles, G.; Kahn, A. The influence of steps on the orientation of copper phthalocyanine monolayers on Au(111). Langmuir 2000, 16, 4358–4361.CrossRefGoogle Scholar
  8. [8]
    Takada, M.; Tada, H. Scanning tunneling microscopy and spectroscopy of phthalocyanine molecules on metal surfaces. Jpn. J. Appl. Phys. 2005, 44, 5332–5335.CrossRefADSGoogle Scholar
  9. [9]
    Chen, L.; Hu, Z. P.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L.; Hou, J. G. Mechanism for negative differential resistance inmolecular electronic devices: Local orbital symmetry matching. Phys. Rev. Lett. 2007, 99, 146803.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Zhao, A. D.; Li, Q. X.; Chen, L.; Xiang, H. J.; Wang, W. H.; Pan, S. A.; Wang, B.; Xiao, X. D.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542–1544.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Jiang, P.; Ma, X. C.; Ning, Y. X.; Song, C. L.; Chen, X.; Jia, J. F., Xue, Q. K. Quantum size effect directed selective self-assembling of cobalt phthalocyanine on Pb(111) thin films. J. Am. Chem. Soc. 2008, 130, 7790–7791.CrossRefPubMedGoogle Scholar
  12. [12]
    Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240–9244.CrossRefGoogle Scholar
  13. [13]
    Strohmaier, R.; Ludwig, C.; Petersen, J.; Gompf, B.; Eisenmenger, W. Scanning tunneling microscope investigations of lead-phthalocyanine on MoS2. J. Vac. Sci. Technol. B 1996, 14, 1079–1082.CrossRefGoogle Scholar
  14. [14]
    Gopakumar, T. G.; Lackinger, M.; Hackert, M.; Muller, F.; Hietschold, M. Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 2004, 108, 7839–7843.CrossRefGoogle Scholar
  15. [15]
    Fu, Y. S.; Ji, S. H.; Chen, X.; Ma, X. C.; Wu, R.; Wang, C. C.; Duan, W. H.; Qiu, X. H.; Sun, B.; Zhang, P.; Jia, J. F.; Xue, Q. K. Manipulating the Kondo resonance through 1uantum size effects. Phys. Rev. Lett. 2007, 99, 256601.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Gao, L.; Ji, W.; Hu, Y. B.; Cheng, Z. H.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; Guo, W.; Du, S. X.; Hofer, W. A.; Xie, X. C.; Gao, H. J. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett. 2007, 99, 106402.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Nazin, G. V.; Qiu, X. H.; Ho, W. Visualization and spectroscopy of a metal.molecule.metal bridge. Science 2003, 302, 77–81.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Qiu, X. H.; Nazin, G. V.; Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 2004, 92, 206102.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Nilius, N.; Simic-Milosevic, V. Adsorption of single magnesium phthalocyanine molecules on V2O3 thin films. J. Phys. Chem. C 2008, 112, 10027–10031.CrossRefGoogle Scholar
  20. [20]
    Yang, Z. Y.; Gan, L. H.; Lei, S. B.; Wan, L. J.; Wang, C.; Jiang, J. Z. Self-assembly of PcOC8 and its sandwich lanthanide complex Pr(PcOC8)2 with oligo(phenylene-ethynylene) molecules. J. Phys. Chem. B 2005, 109, 19859–19865.CrossRefPubMedGoogle Scholar
  21. [21]
    Takami, T.; Arnold, D. P.; Fuchs, A. V.; Will, G. D.; Goh, R.; Waclawik, E. R.; Bell, J. M.; Weiss, P. S.; Sugiura, K.; Liu, W.; Jiang, J. Two-dimensional crystal growth and stacking of bis(phthalocyaninato) rare earth sandwich complexes at the 1-phenyloctane/graphite interface. J. Phys. Chem B. 2006, 110, 1661–1664.CrossRefPubMedGoogle Scholar
  22. [22]
    Lei, S. B.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C.; Jiang, J. Z. Electric driven molecular switching of asymmetric tris(phthalocyaninato) lutetium triple-decker complex at theliquid/solid interface. Nano. Lett. 2008, 8, 1836–1843.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Vitali, L.; Fabris, S.; Conte, A. M.; Brink, S.; Ruben, M.; Baroni, S.; Kern, K. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano. Lett. 2008, 8, 3364–3368.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Zhang, Y, F.; Isshiki, H.; Katoh, K.; Yoshida, Y.; Yamashita, M.; Miyasaka, H.; Breedlove, B. K.; Kajiwara, T.; Takaishi, S.; Komeda, T. Low-temperature scanning tunneling microscopy investigation of bis(phthalocyaninato)yttrium growth on Au(111): From individual molecules to two-dimensional domains. J. Phys. Chem. C 2009, 113, 9826–9830.CrossRefGoogle Scholar
  25. [25]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefADSGoogle Scholar
  26. [26]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  28. [28]
    Katoh, K.; Yoshida, Y.; Yamashita, M.; Miyasaka, H.; Breedlove, B. K.; Kajiwara, T.; Takaishi, S.; Ishikawa, N.; Isshiki, H.; Zhang, Y. F.; Komeda, T.; Yamagishi, M.; Takeya, J. Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J. Am. Chem. Soc. 2009, 131, 9967–9976.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yanfeng Zhang
    • 1
    • 2
  • Pengfei Guan
    • 3
  • Hironari Isshiki
    • 1
    • 4
  • Mingwei Chen
    • 3
  • Masahiro Yamashita
    • 4
  • Tadahiro Komeda
    • 1
    • 5
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Advanced Materials and Nanotechnology, College of EngineeringBeijing UniversityBeijingChina
  3. 3.WPI-Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  4. 4.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan
  5. 5.CREST, Japan Science and Technology Agency (JST)SaitamaJapan

Personalised recommendations