Nano Research

, Volume 3, Issue 8, pp 594–603 | Cite as

Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates

  • Pochiang Chen
  • Haitian Chen
  • Jing Qiu
  • Chongwu Zhou
Open Access
Research Article

Abstract

Single-walled carbon nanotube (SWNT) thin film electrodes have been printed on flexible substrates and cloth fabrics by using SWNT inks and an off-the-shelf inkjet printer, with features of controlled pattern geometry (0.4–6 cm2), location, controllable thickness (20–200 nm), and tunable electrical conductivity. The as-printed SWNT films were then sandwiched together with a piece of printable polymer electrolyte to form flexible and wearable supercapacitors, which displayed good capacitive behavior even after 1,000 charge/discharge cycles. Furthermore, a simple and efficient route to produce ruthenium oxide (RuO2) nanowire/SWNT hybrid films has been developed, and it was found that the knee frequency of the hybrid thin film electrodes can reach 1,500 Hz, which is much higher than the knee frequency of the bare SWNT electrodes (˜158 Hz). In addition, with the integration of RuO2 nanowires, the performance of the printed SWNT supercapacitor was significantly improved in terms of its specific capacitance of 138 F/g, power density of 96 kW/kg, and energy density of 18.8 Wh/kg. The results indicate the potential of printable energy storage devices and their significant promise for application in wearable energy storage devices.

Keywords

Nanowires carbon nanotubes supercapacitors printed and wearable energy devices 

Supplementary material

12274_2010_20_MOESM1_ESM.pdf (580 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4269.CrossRefPubMedGoogle Scholar
  2. [2]
    Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-dimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.CrossRefPubMedGoogle Scholar
  3. [3]
    Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes, III J. B.; Li, L.; Kim, R. H.; Xiao, J.; Wang, S.; Kim, T. H.; Motala, M. J.; Ahn, B. Y.; Duoss, E. B.; Lewis, J. A.; Nuzzo, R. G.; Ferreira, P. M.; Huang, Y.; Rockett, A.; Rogers, J. A. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 2008, 7, 907–915.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.CrossRefPubMedGoogle Scholar
  6. [6]
    Pasquier, A. D.; Plitz, I.; Menocal, S.; Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 2003, 115, 171–178.CrossRefGoogle Scholar
  7. [7]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. 2007, 104, 13574–13577.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, T. M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrode. Nat. Mater. 2006, 5, 987–994.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum: New York, 1999.Google Scholar
  12. [12]
    Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.CrossRefPubMedGoogle Scholar
  13. [13]
    Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950.CrossRefGoogle Scholar
  14. [14]
    Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.CrossRefPubMedGoogle Scholar
  15. [15]
    An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 2001, 13, 497–500.CrossRefGoogle Scholar
  16. [16]
    Kaempgen, M.; Ma, J.; Gruner, G.; Wee, G.; Mhaisalker, S. G. Bifunctional carbon nanotube networks for supercapacitors. Appl. Phys. Lett. 2007, 90, 264104.CrossRefADSGoogle Scholar
  17. [17]
    Kiebele, A.; Gruner, G. Carbon nanotube based battery architecture. Appl. Phys. Lett. 2007, 91, 144104.CrossRefADSGoogle Scholar
  18. [18]
    Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1919–1923.CrossRefGoogle Scholar
  19. [19]
    Hu, L.; Pasta, M.; Mantia, F. L.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han H. M.; Cui Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; Mantia, F. L.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 2009, 106, 21490–21494.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Small, W. R.; Panhuis, M. I. H. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 2007, 3, 1500–1509.CrossRefPubMedGoogle Scholar
  22. [22]
    Kords, K.; Mustonen, T.; Tth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2006, 2, 1021–1025.CrossRefGoogle Scholar
  23. [23]
    Song, J. W.; Kim, J.; Yoon, Y. H.; Choi, B. S.; Kim, J. H.; Han, C. S. Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern. Nanotechnology 2008, 19, 095702.CrossRefADSGoogle Scholar
  24. [24]
    Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Ardizzone, A.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.CrossRefGoogle Scholar
  26. [26]
    Trasatti, S. Physical electrochemistry of ceramic oxides. Electrochim. Acta 1991, 36, 225–241.CrossRefGoogle Scholar
  27. [27]
    Chen, P. C.; Shen, G.; Sukcharoenchoke, S.; Zhou, C. Flexible and transparent supercapacitor based on In2O3 nanowire/ carbon nanotube heterogeneous films. Appl. Phys. Lett. 2009, 94, 043113.CrossRefADSGoogle Scholar
  28. [28]
    Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 2000, 77, 2421–2423.CrossRefADSGoogle Scholar
  30. [30]
    Shaijumon, M. M.; Ou, F. S.; Ci, L.; Ajayan, P. M. Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chem. Comm. 2008, 2373–2375.Google Scholar
  31. [31]
    Barsoukov, E.; Macdonald, J. R. Impedance spectroscopy theory, experiment, and applications; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005.CrossRefGoogle Scholar
  32. [32]
    Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 1997, 70, 1480–1482.CrossRefADSGoogle Scholar
  33. [33]
    Du, C.; Pan N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 2006, 17, 5314–5318.CrossRefADSGoogle Scholar
  34. [34]
    Khomenko, V.; Raymundo-Pieñro, E.; Béguin, F. Optimization of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J. Power Sources 2006, 153, 183–190.CrossRefGoogle Scholar
  35. [35]
    Liu, Y. L.; Wu, Z. Y.; Lin, K. J.; Huang, J. J.; Lin Y. H.; Jian, W. B.; Lin, J. J. Growth of single-crystalline RuO2 nanowires with one- and two- nanocontact electrical characterizations. Appl. Phys. Lett. 2007, 90, 013105.CrossRefADSGoogle Scholar
  36. [36]
    Ramani, M.; Haran, B. S.; White, R. E.; Popov, B. N. Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. J. Electrochem. Soc. 2001, 148, A374–380.CrossRefGoogle Scholar
  37. [37]
    Sun, Z.; Liu, Z.; Han, B.; Miao, S.; Du, J.; Miao, Z. Microstructural and electrochemical characterization of RuO2/CNT composite synthesized in supercritical diethylamine. Carbon 2006, 44, 888–893.CrossRefGoogle Scholar
  38. [38]
    Qin, X.; Durbach, S.; Wu, G. T. Electrochemical characterization on RuO2·xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors. Carbon 2004, 42, 451–453.CrossRefGoogle Scholar
  39. [39]
    Ye, J. S.; Cui, H. F.; Liu, Z.; Lim, T. M.; Zhang, W. D.; Sheu, F. S. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 2005, 1, 560–565.CrossRefPubMedGoogle Scholar
  40. [40]
    Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pochiang Chen
    • 1
  • Haitian Chen
    • 2
  • Jing Qiu
    • 1
  • Chongwu Zhou
    • 1
    • 2
  1. 1.Chemical Engineering Department and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations