Nano Research

, Volume 3, Issue 8, pp 574–580 | Cite as

Nanocrystalline intermetallics and alloys

Open Access
Research Article

Abstract

Nanocrystalline intermetallics and alloys are novel materials with high surface areas which are potential low-cost and high-performance catalysts. Here, we report a general approach to the synthesis of a large variety of nanocrystalline intermetallics and alloys with controllable composition, size, and morphology: these include Au-, Pd-, Pt-, Ir-, Ru-, and Rh-based bi- or tri-metallic nanocrystals. We find that only those intermetallics and alloys whose effective electronegativity is larger than a critical value (1.93) can be prepared by co-reduction in our synthetic system. Our methodology provides a simple and convenient route to a variety of intermetallic and alloyed nanomaterials which are promising candidates for catalysts for reactions such as methanol oxidation, hydroformylation, the Suzuki reaction, cyclohexene hydroconversion, and the selective hydrogenation of acetylene.

Keywords

Intermetallics alloys nanocrystals controllable synthesis catalysts 

Supplementary material

12274_2010_18_MOESM1_ESM.pdf (2 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Elattar, A.; Takeshita, T.; Wallace, W. E.; Craig, R. S. Intermetallic compounds of the type MNi5 as methanation catalysts. Science 1977, 196, 1093–1094.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1926.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Taub, A. I.; Fleischer, R. L. Intermetallic compounds for high-temperature structural use. Science 1989, 243, 616–621.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Rodriguez, J. A.; Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897–903.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Jaime, M.; Movshovich, R.; Stewart, G. R.; Beyermann, W. P.; Berisso, M. G.; Hundley, M. F.; Canfield, P. C.; Sarrao, J. L. Closing the spin gap in the Kondo insulator Ce3Bi4Pt3 at high magnetic fields. Nature 2000, 405, 160–163.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Gschneidner, K.; Russell, A.; Pecharsky, A.; Morris, J.; Zhang, Z. H.; Lograsso, T.; Hsu, D.; Lo, C. H. C.; Ye, Y. Y.; Slager, A.; Kesse, D. A family of ductile intermetallic compounds. Nat. Mater. 2003, 2, 587–591.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Krenke, T.; Duman, E.; Acet, M.; Wassermann, E. F.; Moya, X.; Manosa, L.; Planes, A. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 2005, 4, 450–454.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Novet, T.; Johnson, D. C. New synthetic approach to extended solids-selective synthesis of iron silicides via the amorphous state. J. Am. Chem. Soc. 1991, 113, 3398–3403.CrossRefGoogle Scholar
  10. [10]
    Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184.CrossRefGoogle Scholar
  11. [11]
    Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2, 145–150.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Banin, U. Tiny seeds make a big difference-a seeded-growth approach provides shape-controlled bimetallic nanocrystals and opens the way for a rich selection of new nanoscale building blocks. Nat. Mater. 2007, 6, 625–626.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Raney, M. Method of producing finely divided nickel. U.S. Patent 1628190, 1927.Google Scholar
  14. [14]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.CrossRefGoogle Scholar
  17. [17]
    Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607–616.CrossRefGoogle Scholar
  18. [18]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  19. [19]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.CrossRefPubMedGoogle Scholar
  21. [21]
    Wang, D. S.; Xie, T.; Peng, Q.; Zhang, S. Y.; Chen, J.; Li, Y. D. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J. 2008, 14, 2507–2513.CrossRefGoogle Scholar
  22. [22]
    Pauling, L. The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582.CrossRefGoogle Scholar
  23. [23]
    Liu, X. Y.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports. Chem. Mater. 2009, 21, 410–418.CrossRefGoogle Scholar
  24. [24]
    Wang, L. L.; Johnson, D. D. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles. J. Am. Chem. Soc. 2009, 131, 14023–14029.CrossRefPubMedGoogle Scholar
  25. [25]
    Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.CrossRefPubMedGoogle Scholar
  26. [26]
    Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations