Nano Research

, Volume 3, Issue 8, pp 564–573 | Cite as

Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique

  • Anuj R. Madaria
  • Akshay Kumar
  • Fumiaki N. Ishikawa
  • Chongwu Zhou
Open Access
Research Article

Abstract

Silver nanowire films are promising alternatives to tin-doped indium oxide (ITO) films as transparent conductive electrodes. In this paper, we report the use of vacuum filtration and a polydimethylsiloxane (PDMS)-assisted transfer printing technique to fabricate silver nanowire films on both rigid and flexible substrates, bringing advantages such as the capability of patterned transfer, the best performance among various ITO alternatives (10 Ω/sq at 85% transparency), and good adhesion to the underlying substrate, thus eliminating the previously reported adhesion problem. In addition, our method also allows the preparation of high quality patterned films of silver nanowires with different line widths and shapes in a matter of few minutes, making it a scalable process. Furthermore, use of an anodized aluminum oxide (AAO) membrane in the transfer process allows annealing of nanowire films at moderately high temperature to obtain films with extremely high conductivity and good transparency. Using this transfer technique, we obtained silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85%, a sheet resistance of 10 Ω/sq, with good mechanical flexibility. Detailed analysis revealed that the Ag nanowire network exhibits two-dimensional percolation behavior with good agreement between experimentally observed and theoretically predicted values of critical volume.

Keywords

Ag nanowire PDMS transfer transparent electrode flexible electronics percolation network 

Supplementary material

12274_2010_17_MOESM1_ESM.pdf (659 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Haacke, G. Transparent conducting coatings. Ann. Rev. Mater. Sci. 1977, 7, 73–93.CrossRefADSGoogle Scholar
  2. [2]
    Granqvist, C. G. Transparent conductors as solar energy materials: A panoramic review. Sol. Energy Mater. Sol. Cells 2007, 91, 1529–1598.CrossRefGoogle Scholar
  3. [3]
    Thomas, G. Invisible circuits. Nature 1997, 389, 907–908.CrossRefADSGoogle Scholar
  4. [4]
    Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44.CrossRefADSGoogle Scholar
  5. [5]
    Chopra, K. L.; Major, S.; Pandya, D. K. Transparent conductors-A status review. Thin Solid Films 1983, 102, 1–46.CrossRefADSGoogle Scholar
  6. [6]
    Hartnagel, H. L.; Dawar, A. L.; Jain, A. K.; Jagadish, C. Semiconducting Transparent Thin Films; Institute of Physics Publishing: Philadelphia, 1995.Google Scholar
  7. [7]
    Meiss, J.; Riede, M. K.; Leo, K. Towards efficient tindoped indium oxide (ITO)-free inverted organic solar cells using metal cathodes. Appl. Phys. Lett. 2009, 94, 013303.CrossRefADSGoogle Scholar
  8. [8]
    O’Connor, B.; Haughn, C.; An, K. H.; Pipe, K. P.; Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 2008, 93, 223304.CrossRefADSGoogle Scholar
  9. [9]
    Kang, M. G.; Kim, M. S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.CrossRefGoogle Scholar
  10. [10]
    Tvingstedt, K.; Inganas, O. Electrode grids for ITO-free organic photovoltaic devices. Adv. Mater. 2007, 19, 2893–2897.CrossRefGoogle Scholar
  11. [11]
    Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.CrossRefADSGoogle Scholar
  12. [12]
    Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Geng, H. -Z.; Lee, D. S.; Kim, K. K.; Han, G. H.; Park, H. K.; Lee, Y. H. Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structure. Chem. Phys. Lett. 2008, 455, 275–278.CrossRefADSGoogle Scholar
  14. [14]
    Doherty, E. M.; De, S.; Lyons, P. E.; Shmeliov, A.; Nirmalraj, P. N.; Scardaci, V.; Joimel, J.; Blau, W. J.; Boland, J. J.; Coleman, J. N. The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon 2009, 47, 2466–2473.CrossRefGoogle Scholar
  15. [15]
    Zhou, Y.; Hu, L.; Grüner, G. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 2006, 88, 123109.CrossRefADSGoogle Scholar
  16. [16]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Mann, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379–1383.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefPubMedGoogle Scholar
  19. [19]
    Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Thompson, M. E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Li, J.; Hu, L.; Wang, L.; Zhou, Y.; Gruner, G.; Marks, T. J. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 2006, 6, 2472–2477.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Wu, J.; Agarwal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.CrossRefPubMedGoogle Scholar
  23. [23]
    Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. -J.; Dennler, G.; Sariciftci, N. S.; Hu, L.; Grüner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.CrossRefADSGoogle Scholar
  24. [24]
    Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.CrossRefADSGoogle Scholar
  25. [25]
    Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefPubMedADSGoogle Scholar
  26. [26]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  27. [27]
    Zaumseil, J.; Someya, T.; Baldwin, K.; Bao, Z.; Loo, Y. -L.; Rogers, J. A. Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 2003, 82, 793–795.CrossRefADSGoogle Scholar
  28. [28]
    Choi, K. M.; Rogers, J. A. A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 2003, 125, 4060–4061CrossRefPubMedGoogle Scholar
  29. [29]
    Lee, T. -W.; Zaumseil, J.; Bao, Z.; Hsu, J. W. P.; Rogers, J. A. Organic light-emitting diodes formed by soft contact lamination. Proc. Nat. Acad. Sci. USA 2004, 101, 429–433.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Sun, Y.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.CrossRefADSGoogle Scholar
  31. [31]
    Meitl, M. A.; Zhu, Z. -T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.CrossRefADSGoogle Scholar
  32. [32]
    Pike, G. E.; Seager, C. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.CrossRefADSGoogle Scholar
  33. [33]
    Yi, Y.; Sastry, A. Analytical approximation of the two-dimensional percolation threshold for fields of overlapping ellipses. Phys. Rev. E 2002, 66, 066130.CrossRefADSGoogle Scholar
  34. [34]
    Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–588.CrossRefADSGoogle Scholar
  35. [35]
    Hines, D. R.; Mezhenny, S.; Breban, M.; Williams, E. D.; Ballarotto, V. W.; Esen, G.; Southard, A.; Fugrer, M. S. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 2005, 86, 163101.CrossRefADSGoogle Scholar
  36. [36]
    Freeman, R. G.; Graber, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 1995, 267, 1629–1632.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Stauffer, G. Introduction to Percolation Theory; Taylor & Francis: London, 1985.MATHCrossRefGoogle Scholar
  38. [38]
    Crawford, G. P. Flexible Flat Panel Displays; John Wiley & Sons: England, 2005.CrossRefGoogle Scholar
  39. [39]
    Li, J.; Liu, J.; Wang, L.; Marks, T. J.; Hu, L.; Grüner, G. Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. Appl. Phys. Lett. 2008, 93, 083306.CrossRefADSGoogle Scholar
  40. [40]
    Pagliaro, M.; Ciriminna, R.; Palmisano, G. Flexible solar cells. ChemSusChem 2008, 1, 880–891.CrossRefPubMedGoogle Scholar
  41. [41]
    Chen, P. -C.; Shen, G.; Sukcharoenchoke, S.; Zhou, C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 2009, 94, 043113.CrossRefADSGoogle Scholar
  42. [42]
    Ishikawa, F. N.; Chang, H. -K.; Ryu, K.; Chen, P. -C.; Badmaev, A.; De Arco, L. G.; Shen, G.; Zhou, C. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.CrossRefPubMedGoogle Scholar
  43. [43]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2006, 448, 457–460.CrossRefADSGoogle Scholar
  44. [44]
    Tung, V. C.; Chen, L.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949–1955.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anuj R. Madaria
    • 1
  • Akshay Kumar
    • 1
  • Fumiaki N. Ishikawa
    • 1
  • Chongwu Zhou
    • 1
  1. 1.Department of Electrical Engineering and Center for Energy Nanoscience and TechnologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations