Nano Research

, Volume 3, Issue 6, pp 452–458 | Cite as

Aqueous supercapacitors on conductive cotton

  • Mauro Pasta
  • Fabio La Mantia
  • Liangbing Hu
  • Heather Dawn Deshazer
  • Yi Cui
Open Access
Research Article

Abstract

Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (˜70–80 F·g−1 at 0.1 A·g−1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices.

Keywords

Supercapacitor wearable electronics energy storage carbon nanotubes 

References

  1. [1]
    Gniotek, K.; Kruci.ska, I. The basic problems of textronics. Fibres Text. East. Eur. 2004, 12, 13–16.Google Scholar
  2. [2]
    Lukowicz, P.; Kirstein, T.; Troster, G. Wearable systems for health care applications. Method. Inform. Med. 2004, 43, 232–238.Google Scholar
  3. [3]
    Park, S.; Jayaraman, S. Smart textiles: Wearable electronic systems. MRS Bull. 2003, 28, 585–591.Google Scholar
  4. [4]
    Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Hertel, T.; Walkup, R. E.; Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870–13873.CrossRefADSGoogle Scholar
  6. [6]
    An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 2001, 13, 497–500.CrossRefGoogle Scholar
  7. [7]
    Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104, 2089–2092.CrossRefADSGoogle Scholar
  8. [8]
    Yu, X.; Lin, B.; Gong, B.; Lin, J.; Wang, R.; Wei, K. Effect of nitric acid treatment on carbon nanotubes (CNTs)-cordierite monoliths supported ruthenium catalysts for ammonia synthesis. Catal. Lett. 2008, 124, 168–173.CrossRefGoogle Scholar
  9. [9]
    Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T.; Hiraga, K.; Nisshina, Y. Purifying single-walled nanotubes. Nature 1996, 383, 679.CrossRefADSGoogle Scholar
  10. [10]
    Parekh, B. B.; Fanchini, G.; Eda, G.; Chhowalla, M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 2007, 90, 121913.CrossRefADSGoogle Scholar
  11. [11]
    Zhou, W.; Vavro, J.; Nemes, N. M.; Fischer, J. E.; Borondics, F.; Kamaras, K.; Tanner, D. B. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 205423.CrossRefADSGoogle Scholar
  12. [12]
    Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta 2009, 54, 1240–1248.CrossRefGoogle Scholar
  13. [13]
    Prosini, P. P.; Pozio, A.; Botti, S.; Ciardi, R. Electrochemical studies of hydrogen evolution, storage and oxidation on carbon nanotube electrodes. J. Power Sources 2003, 118, 265–269.CrossRefGoogle Scholar
  14. [14]
    Newman, J. S.; Tobias, C. W. J Theoretical analysis of current distribution in porous electrodes. Electrochem. Soc. 1962, 109, 1183–1191.CrossRefGoogle Scholar
  15. [15]
    de Levie, R. Porous electrodes in electrolyte solutions. IV. Electrochim. Acta 1964, 9, 1231.CrossRefGoogle Scholar
  16. [16]
    Ng, S. H.; La Mantia, F.; Novak, P. A multiple working electrode for electrochemical cells: A tool for current density distribution studies. Angew. Chem. Int. Ed. 2009, 48, 528–532.CrossRefGoogle Scholar
  17. [17]
    Daniel-Bek, V. S. Polarization of porous electrodes. I. Distribution of current and potential within an electrode. Zh. Fiz. Khim. 1948, 22, 697–710.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mauro Pasta
    • 1
    • 2
  • Fabio La Mantia
    • 2
  • Liangbing Hu
    • 2
  • Heather Dawn Deshazer
    • 2
  • Yi Cui
    • 2
  1. 1.Dipartimento di Chimica Inorganica, Metallorganica e Analitica “Lamberto Malatesta”Università degli Studi di MilanoMilanoItaly
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations