Nano Research

, Volume 3, Issue 7, pp 459–471

Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

  • Joachim Schnadt
  • Wei Xu
  • Ronnie T. Vang
  • Jan Knudsen
  • Zheshen Li
  • Erik Lægsgaard
  • Flemming Besenbacher
Open Access
Research Article


The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 °C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions and that kinetic factors play an important role.


Molecular self-assembly hydrogen bonding scanning tunnelling microscopy X-ray photoelectron spectroscopy 


  1. [1]
    Lehn, J. M. Toward self-organization of complex matter. Science 2002, 295, 2400–2403.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Ariga, K.; Kunitake, T. Supramolecular Chemistry-Fundamentals and Applications; Springer: Berlin, 2006.Google Scholar
  3. [3]
    Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Stepanow, S.; Lin, N.; Barth, J. V. Modular assembly of low-dimensional coordination architectures on metal surfaces. J. Phys.: Condens. Matter 2008, 20, 184002.CrossRefADSGoogle Scholar
  5. [5]
    Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Fichou, D. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J. Mater. Chem. 2000, 10, 571–588.CrossRefGoogle Scholar
  7. [7]
    Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201–341.CrossRefADSGoogle Scholar
  8. [8]
    Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95–146.CrossRefADSGoogle Scholar
  9. [9]
    Cicoira, F.; Santato, C.; Rosei, F. Two-dimensional nanotemplates as surface cues for the controlled assembly of organic molecules. Top. Curr. Chem. 2008, 285, 203–267.CrossRefGoogle Scholar
  10. [10]
    Samorì, P. Exploring supramolecular interactions and architectures by scanning force microscopies. Chem. Soc. Rev. 2005, 34, 551–561.CrossRefPubMedGoogle Scholar
  11. [11]
    Liang, H.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Two-dimensional molecular porous networks constructed by surface assembling. Coord. Chem. Rev. 2009, 253, 2959–2979.CrossRefGoogle Scholar
  12. [12]
    Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Supramolecular chemistry at interfaces: Molecular recognition on nanopatterned porous surfaces. Chem. Eur. J. 2009, 15, 7004–7025.CrossRefGoogle Scholar
  13. [13]
    Vang, R. T.; Lægsgaard, E.; Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2007, 9, 3460–3469.CrossRefPubMedGoogle Scholar
  14. [14]
    Vattuone, L.; Savio, L.; Rocca, M. Bridging the structure gap: Chemistry of nanostructured surfaces at well-defined defects. Surf. Sci. Rep. 2008, 63, 101–168.CrossRefADSGoogle Scholar
  15. [15]
    Freund, H. -J.; Bäumer, M.; Libuda, J.; Risse, T.; Rupprechter, G.; Shaikhutdinov, S. Preparation and characterization of model catalysts: From ultrahigh vacuum to in situ conditions at the atomic dimension. J. Catal. 2003, 216, 223–235.CrossRefGoogle Scholar
  16. [16]
    Schnadt, J.; Rauls, E.; Xu, W.; Vang, R. T.; Knudsen, J.; Lægsgaard, E.; Li, Z.; Hammer, B.; Besenbacher, F. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 2008, 100, 046103.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Besenbacher, F. Scanning tunnelling microscopy studies of metal surfaces. Rep. Prog. Phys. 1996, 59, 1737–1802.CrossRefADSGoogle Scholar
  18. [18]
    Uggerhøj, E. The Aarhus storage ring-A research facility for physics, chemistry, medicine, and materials sciences. Nucl. Instrum. Meth. Phys. Res. B 1995, 99, 261–266.CrossRefADSGoogle Scholar
  19. [19]
    McQuaide, B. H.; Banna, M. S. The core binding energies of some gaseous aromatic carboxylic acids and their relationship to proton affinities and gas phase acidities. Can. J. Chem. 1988, 66, 1919–1922.CrossRefGoogle Scholar
  20. [20]
    Patthey, L.; Rensmo, H.; Persson, P.; Westermark, K.; Vayssieres, L.; Stashans, A.; Petersson, Å; Brühwiler, P. A.; Siegbahn, H.; Lunell, S.; Mårtensson, N. Adsorption of bi-isonicotinic acid on rutile TiO2(110). J. Chem. Phys. 1999, 110, 5913–5918.CrossRefADSGoogle Scholar
  21. [21]
    Aplincourt, P.; Bureau, C.; Anthoine, J. -L.; Chong, D. P. Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J. Phys. Chem. A 2001, 105, 7364–7370.CrossRefGoogle Scholar
  22. [22]
    Schnadt, J.; O’shea, J. N.; Patthey, L.; Schiessling, J.; Krempaský, J.; Shi, M.; Mårtensson, N.; Brühwiler, P. A. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) II: XPS. Surf. Sci. 2003, 544, 74–86.CrossRefADSGoogle Scholar
  23. [23]
    O’shea, J. N.; Schnadt, J.; Brühwiler, P. A.; Hillesheimer, H.; Mårtensson, N.; Patthey, L.; Krempaský, J.; Wang, C. K.; Luo, Y.; Ågren, H. Hydrogen-bond induced surface corelevel shift in isonicotinic acid. J. Phys. Chem. B 2001, 105, 1917–1920.CrossRefGoogle Scholar
  24. [24]
    O’shea, J. N.; Luo, Y.; Schnadt, J.; Patthey, L.; Hillesheimer, H.; Krempaský, J.; Nordlund, D.; Nagasano, M.; Brühwiler, P. A.; Mårtensson, N. Hydrogen-bond induced surface core-level shift in pyridine carboxylic acids. Surf. Sci. 2001, 486, 157–166.CrossRefGoogle Scholar
  25. [25]
    Tabayahi, K.; Yamamoto, K.; Takahashi, O.; Tamenori, Y.; Harries, J. R.; Gejo, T.; Iseda, M.; Tamura, T.; Honma, K.; Suzuki, I. H.; Nagaoka, S.; Ibuki, T. Inner-shell excitation spectroscopy and fragmentation of small hydrogen-bonded clusters of formic acid after core excitations at the oxygen K edge. J. Chem. Phys. 2006, 125, 194307.CrossRefADSGoogle Scholar
  26. [26]
    Takahashi, O.; Yamanouchi, S.; Yamamoto, K.; Tabayashi, K. Theoretical study of the X-ray absorption spectra of small formic acid clusters. Chem. Phys. Lett. 2006, 419, 501–505.CrossRefADSGoogle Scholar
  27. [27]
    Minkov, I.; Gel’mukhanov, F.; Friedlein, R.; Osikowicz, W.; Suess, C.; Öhrwall, G.; Sorensen, S. L.; Braun, S.; Murdey, R.; Salaneck, W. R.; Ågren, H. Core excitations of naphthalene: Vibrational structure versus chemical shifts. J. Chem. Phys. 2004, 121, 5733–5739.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Schnadt, J.; Schiessling, J.; O’shea, J. N.; Gray, S. M.; Patthey, L.; Johansson, M. K. -J.; Shi, M.; Krempaský, J.; Åhlund, J.; Karlsson, P. G.; Persson, P.; Mårtensson, N.; Brühwiler, P. A. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) I: XAS and STM. Surf. Sci. 2003, 540, 39–54.CrossRefADSGoogle Scholar
  29. [29]
    Kaduk, J. A.; Golab, J. T. Structures of 2,6-disubstituted naphthalenes. Acta Crystallogr. B 1999, 55, 85–94.CrossRefPubMedGoogle Scholar
  30. [30]
    Atodiresei, N.; Caciuc, V.; Franke, J. -H.; Blügel, S. Role of the van der Waals interactions on the bonding mechanism of pyridine on Cu(110) and Ag(110) surface: First-principles study. Phys. Rev. B 2008, 78, 045411.CrossRefADSGoogle Scholar
  31. [31]
    Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997; p. 12.Google Scholar
  32. [32]
    Tan, X.; Yang, G. W. Supramolecular nanowires self-assembly on stepped Ag(110) surface. J. Phys. Chem. C 2009, 113, 19926–19929.CrossRefGoogle Scholar
  33. [33]
    Pai, W. W.; Bartelt, N. C.; Peng, M. R.; Reutt-Robey, J. E. Steps as adatom sources for surface chemistry: oxygen overlayer formation on Ag(110). Surf. Sci. 1995, 330, L679–L685.CrossRefGoogle Scholar
  34. [34]
    Zambelli, T.; Barth, J. V.; Wintterlin, J. Formation mechanism of the O-induced added-row reconstruction on Ag(110): A low-temperature STM study. Phys. Rev. B 1998, 58, 12663–12666.CrossRefADSGoogle Scholar
  35. [35]
    Barth, J. V.; Weckesser, J.; Lin, N.; Dmitriev, A.; Kern, K. Supramolecular architectures and nanostructures at metal surfaces. Appl. Phys. A 2003, 76, 645–652.CrossRefADSGoogle Scholar
  36. [36]
    Lin, N.; Dmitriev, A.; Weckesser, J.; Barth, J. V.; Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Int. Ed. 2002, 41, 4779–4783.CrossRefGoogle Scholar
  37. [37]
    Chen, Q.; Perry, C. C.; Frederick, B. G.; Murray, P. W.; Haq, S.; Richardson, N. V. Structural aspects of the low-temperature deprotonation of benzoic acid on Cu(110) surfaces. Surf. Sci. 2000, 446, 63–75.CrossRefADSGoogle Scholar
  38. [38]
    Dougherty, D. B.; Maksymovych, P.; Yates, J. T. Direct STM evidence for Cu-benzoate surface complexes on Cu(110). Surf. Sci. 2006, 600, 4484–4491.CrossRefADSGoogle Scholar
  39. [39]
    Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V. Face specificity and the role of metal adatoms in molecular reorientation at surfaces. Surf. Sci. 1998, 409, 512–520.CrossRefADSGoogle Scholar
  40. [40]
    Classen, T.; Lingenfelder, M.; Wang, Y.; Chopra, R.; Virojanadara, C.; Starke, U.; Costantini, G.; Fratesi, G.; Fabris, S.; de Gironcoli, S.; Baroni, S.; Haq, S.; Raval, R.; Kern, K. Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110). J. Phys. Chem. A 2007, 111, 12589–12603.CrossRefPubMedGoogle Scholar
  41. [41]
    Puschmann, A.; Haase, J.; Crapper, M. D.; Riley, C. E.; Woodruff, D. P. Structure determination of the formate intermediate on Cu(110) by use of X-ray absorption fine-structure measurements. Phys. Rev. Lett. 1985, 54, 2250–2252.CrossRefPubMedADSGoogle Scholar
  42. [42]
    Pascal, M.; Lamont, C. L. A; Kittel, M.; Hoeft, J. T.; Terborg, R.; Polcik, M.; Kang, J. H.; Toomes, R.; Woodruff, D. P. Quantitative structural determination of the high coverage phase of the benzoate species on Cu(110). Surf. Sci. 2001, 492, 285–293.CrossRefADSGoogle Scholar
  43. [43]
    Gomes, J. R. B.; Gomes, J. A. N. F. Adsorption of the formate species on copper surfaces: A DFT study. Surf. Sci. 1999, 432, 279–290.CrossRefADSGoogle Scholar
  44. [44]
    Casarin, M.; Maccato, C.; Vittadini, A. LCAO-LDA study of the chemisorption of formate on Cu(110) and Ag(110) surfaces. J. Chem. Soc., Faraday Trans. 1998, 94, 797–804.CrossRefGoogle Scholar
  45. [45]
    Lennartz, M. C.; Atodiresei, N.; Müller-Meskamp, L. M.; Karthäuser, S.; Waser, R.; Blügel, S. Cu-adatom-mediated bonding in close-packed benzoate/Cu(110) systems. Langmuir 2009, 25, 856–864.CrossRefPubMedGoogle Scholar
  46. [46]
    Montoya, A.; Haynes, B. S. DFT analysis of the reaction paths of formaldehyde decomposition on silver. J. Phys. Chem. A 2009, 113, 8125–8131.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Joachim Schnadt
    • 1
    • 2
  • Wei Xu
    • 1
    • 3
  • Ronnie T. Vang
    • 1
  • Jan Knudsen
    • 1
  • Zheshen Li
    • 4
  • Erik Lægsgaard
    • 1
  • Flemming Besenbacher
    • 1
  1. 1.Interdisciplinary Nanoscience Center, iNANO, and Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Division of Synchrotron Radiation Research, Department of PhysicsLund UniversityLundSweden
  3. 3.Shanghai Key Laboratory for Metallic Functional Materials, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and EngineeringTongji UniversityShanghaiChina
  4. 4.Institute for Storage Ring FacilitiesAarhus UniversityAarhus CDenmark

Personalised recommendations