Nano Research

, Volume 2, Issue 12, pp 975–983 | Cite as

Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation

  • Binghui Wu
  • Hai Zhang
  • Cheng Chen
  • Shuichao Lin
  • Nanfeng Zheng
Open Access
Research Article

Abstract

Au nanoparticles epitaxially grown on Fe3O4 in Au (6.7 nm)-Fe3O4 dumbbell nanoparticles exhibit excellent stability against sintering, but display negligible catalytic activity in CO oxidation. Starting from various supported Au (6.7 nm)-Fe3O4 catalysts prepared by the colloidal deposition method, we have unambiguously identified the significance of the Au-TiO2 interface in CO oxidation, without any possible size effect of Au. In situ thermal decomposition of TiO2 precursors on Au-Fe3O4 was found to be an effective way to increase the Au-TiO2 interface and thereby optimize the catalytic performance of TiO2-supported Au-Fe3O4 dumbbell nanoparticles. By reducing the size of Fe3O4 from 15.2 to 4.9 nm, the Au-TiO2 contact was further increased so that the resulting TiO2-supported Au (6.7 nm)-Fe3O4 (4.9 nm) dumbbell particles become highly efficient catalysts for CO oxidation at room temperature.

Keywords

Gold nanocatalysts support effect CO oxidation Au-Fe3O4 dumbbell nanoparticles 

Supplementary material

12274_2009_9102_MOESM1_ESM.pdf (336 kb)
Supplementary material, approximately 101 KB.

References

  1. [1]
    Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6, 102–115.CrossRefGoogle Scholar
  2. [2]
    Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.CrossRefPubMedGoogle Scholar
  3. [3]
    Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27–36.Google Scholar
  4. [4]
    Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. -Sci. Eng. 1999, 41, 319–388.CrossRefGoogle Scholar
  5. [5]
    Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132–1135.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936.CrossRefGoogle Scholar
  8. [8]
    Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126.CrossRefPubMedGoogle Scholar
  9. [9]
    Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Grirrane, A.; Corma, A.; Garcia, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.CrossRefGoogle Scholar
  13. [13]
    Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  14. [14]
    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.CrossRefGoogle Scholar
  15. [15]
    Ma, Z.; Overbury, S. H.; Dai, S. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives. J. Mol. Catal. A-Chem. 2007, 273, 186–197.CrossRefGoogle Scholar
  16. [16]
    Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.CrossRefPubMedGoogle Scholar
  17. [17]
    Iizuka, Y.; Tode, T.; Takao, T.; Yatsu, K.; Takeuchi, T.; Tsubota, S.; Haruta, M. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal. 1999, 187, 50–58.CrossRefGoogle Scholar
  18. [18]
    Schwartz, V.; Mullins, D. R.; Yan, W. F.; Chen, B.; Dai, S.; Overbury, S. H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B 2004, 108, 15782–15790.CrossRefGoogle Scholar
  19. [19]
    Beck, A.; Horvath, A.; Stefler, G.; Scurrell, M. S.; Guczi, L. Role of preparation techniques in the activity of Au/TiO2 nanostructures stabilised on SiO2: CO and preferential CO oxidation. Top. Catal. 2009, 52, 912–919.CrossRefGoogle Scholar
  20. [20]
    Soares, J. M. C.; Bowker, M. Low temperature CO oxidation on supported and unsupported gold compounds. Appl. Catal. A-Gen. 2005, 291, 136–144.CrossRefGoogle Scholar
  21. [21]
    Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A. Preparation of supported gold catalysts for lowtemperature CO oxidation via “size-controlled” gold colloids. J. Catal. 1999, 181, 223–232.CrossRefGoogle Scholar
  22. [22]
    Chou, J.; McFarland, E. W. Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. Chem. Commun. 2004, 1648–1649.Google Scholar
  23. [23]
    Zheng, N.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278–14280.CrossRefPubMedGoogle Scholar
  24. [24]
    Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S. H.; Dai, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun. 2008, 4357–4359.Google Scholar
  25. [25]
    Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  26. [26]
    Zheng, N.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.CrossRefPubMedGoogle Scholar
  27. [27]
    Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739–746.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Binghui Wu
    • 1
  • Hai Zhang
    • 1
  • Cheng Chen
    • 1
  • Shuichao Lin
    • 1
  • Nanfeng Zheng
    • 1
  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations