Nano Research

, Volume 2, Issue 12, pp 931–937 | Cite as

Synthesis and Ex situ doping of ZnTe and ZnSe nanostructures with extreme aspect ratios

  • Joanne W. L. Yim
  • Deirdre Chen
  • Gregory F. Brown
  • Junqiao Wu
Open Access
Research Article


We report synthesis windows for growth of millimeter-long ZnTe nanoribbons and ZnSe nanowires using vapor transport. By tuning the local conditions at the growth substrate, high aspect ratio nanostructures can be synthesized. A Cu-ion immersion doping method was applied, producing strongly p-type conduction in ZnTe and ionic conduction in ZnSe. These extreme aspect ratio wide-bandgap semiconductors have great potential for high density nanostructured optoelectronic circuits.


Aspect ratio doping nanowires zinc selenide zinc telluride 


  1. [1]
    Wang, Y. F.; Lew, K. K.; Ho, T. T.; Pan, L; Novak S. W.; Dickey, E. C.: Redwing, J. M.: Mayer, T. S. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Lett. 2005, 5, 2139–2143.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Zhong, Z. H.: Fang, Y.: Lu, W.: Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2003, 3, 343–346.CrossRefADSGoogle Scholar
  3. [3]
    Gudiksen, M. S.: Lauhon, L. J.: Wang, J.: Smith, D. C.: Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Colli, A.: Fasoli, A.: Ronning, C.: Pisana, S.: Piscanec, S.: Ferrari, A. C. Ion beam doping of silicon nanowires. Nano Lett. 2008, 8, 2188–2193.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Ho, J. C.: Yerushalmi, R.: Jacobson, Z. A.: Fan, Z.: Alley, R. L.: Javey, A. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 2008, 7, 62–67.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Huo, H. B.: Dai, L.: Liu, C.: You, L. P.: Yang, W. Q.: Ma, R. M.: Ran, G. Z.: Qin, G. G. Electrical properties of Cu doped p-ZnTe nanowires. Nanotechnology 2006, 17, 5912–5915.CrossRefADSGoogle Scholar
  7. [7]
    Misra, N.: Grigoropoulos, C. P.: Stumbo, D. P.: Miller, J. N. Laser activation of dopants for nanowire devices on glass and plastic. Appl. Phys. Lett. 2008, 93, 121116.CrossRefADSGoogle Scholar
  8. [8]
    Gunshor, R. L.: Nurmikko, A. V. The first compact blue/green diode lasers-wide-bandgap II–VI semiconductors come of age. Proc. IEEE 1994, 82, 1503–1513.CrossRefGoogle Scholar
  9. [9]
    Löffler, T.: Hahn, T.: Thomson, M.: Jacob, F.: Roskos, H. Large-area electro-optic ZnTe terahertz emitters. Opt. Express 2005, 13, 5353–5362.CrossRefPubMedADSGoogle Scholar
  10. [10]
    van Vugt, L. K.: Zhang, B.: Piccione, B.: Spector, A. A.: Agarwal, R. Size-dependent waveguide dispersion in nanowire optical cavities: Slowed light and dispersionless guiding. Nano Lett. 2009, 9, 1684–1688.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Huo, H. B.: Dai, L.: Xia, D. Y.: Ran, G. Z.: You, L. P.: Zhang, B. R.: Qin, G. G. Synthesis and optical properties of ZnTe single-crystalline nanowires. J. Nanosci. Nanotechnol. 2006, 6, 1182–1184.CrossRefPubMedGoogle Scholar
  12. [12]
    Philipose, U.: Yang, S.: Xu, T.: Ruda, H. E. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 2007, 90, 063103.CrossRefADSGoogle Scholar
  13. [13]
    Xiang, B.: Zhang, H. Z.: Li, G. H.: Yang, F. H.: Su, F. H.: Wang, R. M.: Xu, J.: Lu, G. W.: Sun, X. C.: Zhao, Q.: Yu, D. P. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 2003, 82, 3330–3332.CrossRefADSGoogle Scholar
  14. [14]
    Ye, C.: Fang, X.: Wang, Y.: Yan, P.: Zhao, J.: Zhang, L. Structural characterization of long ZnSe nanowires. Appl. Phys. A: Mater. Sci. Process. 2004, 79, 113–115.CrossRefADSGoogle Scholar
  15. [15]
    Chadi, D. J. The problem of doping in II–VI semiconductors. Ann. Rev. Mater. Sci. 1994, 24, 45–62.CrossRefGoogle Scholar
  16. [16]
    Baron, T.: Saminadayar, K.: Magnea, N. Nitrogen doping of Te-based II–VI compounds during growth by molecular beam epitaxy. J. Appl. Phys. 1998, 83, 1354–1370.CrossRefADSGoogle Scholar
  17. [17]
    Song, H. S.: Zhang, W. J.: Yuan, G. D.: He, Z. B.: Zhang, W. F.: Tang, Y. B.: Luo, L. B.: Lee, C. S.: Bello, I.: Lee, S. T. p-type conduction in arsenic-doped ZnSe nanowires. Appl. Phys. Lett. 2009, 95, 033117.CrossRefADSGoogle Scholar
  18. [18]
    Zhang, J.: Chen, P. -C.: Shen, G.: He, J.: Kumbhar, A.: Zhou, C.: Fang, J. p-type field-effect transistors of singlecrystal zinc telluride nanobelts. Angew. Chem. Int. Edit. 2008, 47, 9469–9471.CrossRefGoogle Scholar
  19. [19]
    Aqili, A. K. S.: Maqsood, A.: Ali, Z. Properties of copperdoped ZnTe thin films by immersion in Cu solution. Appl. Surf. Sci. 2001, 180, 73–80.CrossRefADSGoogle Scholar
  20. [20]
    Maqsood, A.: Shafique, M. Properties of Cu-doped ZnTe thin films prepared by closed space sublimation (CSS) techniques. J. Mater. Sci. 2004, 39, 1101–1103.CrossRefADSGoogle Scholar
  21. [21]
    Fasoli, A.: Colli, A.: Hofmann, S.: Ducati, C.: Robertson, J.: Ferrari, A. C. Shape-selective synthesis of II–VI semiconductor nanowires. Phys. Status Solidi B 2006, 243, 3301–3305.CrossRefGoogle Scholar
  22. [22]
    Kobayashi, M.: Terakado, H.: Sawada, R.: Arakawa, A.: Sato, K. Diffusion profiles of Se in bulk ZnTe. Physica B 2002, 229, 265–268.Google Scholar
  23. [23]
    Magnea, N.: Bensahel, D.: Pautrat, J. L.: Saminadayar, K.: Pfister, J. C. Electrical and opitical-indentification of the presistent acceptor as copper in ZnTe. Solid State Commun. 1979, 30, 259–263.CrossRefADSGoogle Scholar
  24. [24]
    Bensahel, D.: Magnea, N.: Dupuy, M. Behavior of copper in ZnTe SEM CL and PL. Solid State Commun. 1979, 30, 467–472.CrossRefADSGoogle Scholar
  25. [25]
    Aichele, T.: Tribu, A.: Bougerol, C.: Kheng, K.: Andre, R.: Tatarenko, S. Defect-free ZnSe nanowire and nanoneedle nanostructures. Appl. Phys. Lett. 2008, 93, 143106.CrossRefADSGoogle Scholar
  26. [26]
    Park, W. I.: Zheng, G.: Jiang, X.: Tian, B.: Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 2008, 8, 3004–3009.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Wang, Y. Q.: Philipose, U.: Xu, T.: Ruda, H. E.: Kavanagh, K. L. Twinning modulation in ZnSe nanowires. Semicond. Sci. Technol. 2007, 22, 175–178.CrossRefADSGoogle Scholar
  28. [28]
    Salfi, J.: Philipose, U.: de Sousa, C. F.: Aouba, S.: Ruda, H. E. Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection. Appl. Phys. Lett. 2006, 89, 261112.CrossRefADSGoogle Scholar
  29. [29]
    Strukov, D. B.: Snider, G. S.: Stewart, D. R.: Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Ali, Z.: Aqili, A. K. S.: Maqsood, A.: Akhtar, S. M. J. Properties of Cu-doped low resistive ZnSe films deposited by two-sourced evaporation. Vacuum 2005, 80, 302–309.CrossRefGoogle Scholar
  31. [31]
    Orita, M.: Narushima, T.: Yanagita, H. Transparent conductive Cu-doped ZnSe film deposited at room temperature using compound sources followed by laser annealing. Jpn. J. Appl. Phys. 2007, 46, L976–L978.CrossRefADSGoogle Scholar
  32. [32]
    Bolboshenko, V. Z.: Djouadi, D.: Kasiyan, V. A.: Nedeoglo, D. D. Transport phenomena and photoconductivity relaxation in copper-doped zinc selenide crystals. Phys. Status Solidi A 1992, 133, 121–136.CrossRefGoogle Scholar
  33. [33]
    Stringfellow, G. B.: Bube, R. H. Photoelectronic properties of ZnSe crystals. Phys. Rev. 1968, 171, 903–915.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Joanne W. L. Yim
    • 1
    • 2
  • Deirdre Chen
    • 1
  • Gregory F. Brown
    • 1
    • 2
  • Junqiao Wu
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley National LaboratoryMaterials Sciences DivisionBerkeleyUSA

Personalised recommendations