Nano Research

, Volume 2, Issue 12, pp 923–930 | Cite as

Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances

  • Xiaoling Xiao
  • Li Wang
  • Dingsheng Wang
  • Xiangming He
  • Qing Peng
  • Yadong Li
Open Access
Research Article


Orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods have been synthesized by hydrothermal methods. LiMnO2 nanoparticles were synthesized by simple one-step hydrothermal method. To obtain rod-like LiMnO2, γ-MnOOH nanorods were first synthesized and then the H+ ions were completely replaced by Li+ resulting in LiMnO2 nanorods. Their electrochemical performances were thoroughly investigated by galvanostatic tests. Although the LiMnO2 nanoparticles have smaller size than LiMnO2 nanorods, the latter exhibited higher discharge capacity and better cyclability. For example, the discharge capacities of LiMnO2 nanorods reached 200 mA·h/g over many cycles and remained above 180 mA·h/g after 30 cycles. However, the maximum capacity of LiMnO2 nanoparticles was only 170 mA·h/g and quickly decreased to 110 mA·h/g after 30 cycles. Nanorods with one-dimensional electronic pathways favor the transport of electrons along the length direction and accommodate volume changes resulting from charge/discharge processes. Thus the morphology of LiMnO2 may play an important role in electrochemical performance.


LiMnO2 nanoparticles nanorods hydrothermal synthesis one-dimensional nanomaterial electrochemical performance 


  1. [1]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Luo, J. Y.; Xia, Y. Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 2007, 17, 3877–3884.CrossRefGoogle Scholar
  3. [3]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444–7452.CrossRefPubMedGoogle Scholar
  5. [5]
    Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered Li[NixCo1–2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A200–A203.CrossRefGoogle Scholar
  6. [6]
    Ammunden, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943–956.CrossRefGoogle Scholar
  7. [7]
    Shaju, K. M.; Bruce, P. G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557–5562.CrossRefGoogle Scholar
  8. [8]
    Cho, J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 2008, 18, 2257–2261.CrossRefGoogle Scholar
  9. [9]
    Kim, D. K.; Muralidharan, P.; Lee, H. -W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui. Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.CrossRefADSGoogle Scholar
  10. [10]
    Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045–1051.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Amundsen, B.; Desilvestro, J.; Groutso, T.; Hassell, D.; Metson, J. B.; Regan, E.; Steiner, R.; Pickering, P. J. Formation and structural properties of layered LiMnO2 cathode materials. J. Electrochem. Soc. 2000, 147, 4078–4082.CrossRefGoogle Scholar
  12. [12]
    Lee, Y. S.; Sun, Y. K.; Adachi, K.; Yoshio, M. Synthesis and electrochemical characterization of orthorhombic LiMnO2 material. Electrochim. Acta 2003, 48, 1031–1039.CrossRefGoogle Scholar
  13. [13]
    Idemoto, Y.; Mochizuki, T.; Ui, K.; Koura, N. Properties, crystal structure, and performance of o-LiMnO2 as cathode material for Li secondary batteries. J. Electrochem. Soc. 2006, 153, A418–A424.CrossRefGoogle Scholar
  14. [14]
    Wei, Y. J.; Ehrenberg, H.; Bramnik, N. N.; Nikolowski, K.; Baehtz, C.; Fuess, H. In situ synchrotron diffraction study of high temperature prepared orthorhombic LiMnO2. Solid State Ionics 2007, 178, 253–257.CrossRefGoogle Scholar
  15. [15]
    Wu, M. Q.; Zhang, Q. Y.; Lu, H. P.; Chen, A. Nanocrystalline orthorhombic LiMnO2 cathode materials synthesized by a two-step liquid-phase thermal process. Solid State Ionics 2004, 169, 47–50.CrossRefGoogle Scholar
  16. [16]
    Liu, Q.; Li, Y. X.; Hu, Z. L.; Mao, D. L.; Chang, C. K.; Huang, F. Q. One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application. Electrochim. Acta 2008, 53, 7298–7302.CrossRefGoogle Scholar
  17. [17]
    Liu, Q.; Mao, D. L.; Chang, C. K.; Huang, F. Q. Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application. J. Power Sources 2007, 173, 538–544.CrossRefGoogle Scholar
  18. [18]
    Zhou, F.; Zhao, X. M.; Liu, Y. Q.; Li, L.; Yuan, C. G. Sizecontrolled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods. J. Phys. Chem. Solids 2008, 69, 2061–2065.CrossRefADSGoogle Scholar
  19. [19]
    Guo, Z. P.; Konstantinov, K.; Wang, G. X.; Liu, H. K.; Dou, S. X. Preparation of orthorhornbic LiMnO2 material via the sol-gel process. J. Power Sources 2003, 119, 221–225.CrossRefGoogle Scholar
  20. [20]
    Wu, S. H.; Yu, M. Preparation and characterization of o-LiMnO2 cathode materials. J. Power Sources 2007, 165, 660–665.CrossRefGoogle Scholar
  21. [21]
    Lu, C. H.; Wang, H. C. Reverse-microemulsion preparation and characterization of ultrafine orthorhombic LiMnO2 powders for lithium-ion secondary batteries. J. Eur. Ceram. Soc. 2004, 24, 717–723.CrossRefGoogle Scholar
  22. [22]
    Feng, S. H.; Xu, R. R. New materials in hydrothermal synthesis. Acc. Chem. Res. 2001, 34, 239–247.CrossRefPubMedGoogle Scholar
  23. [23]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Templatedirected materials for rechargeable lithium-ion batteries. Chem. Mater. 2008, 20, 667–681.CrossRefGoogle Scholar
  25. [25]
    Kim, M. G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514.CrossRefGoogle Scholar
  26. [26]
    Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Jang, Y. I.; Moorehead, W. D.; Chiang, Y. M.; Synthesis of the monoclinic and orthorhombic phases of LiMnO2 in oxidizing atmosphere. Solid State Ionics 2002, 149, 201–207.CrossRefGoogle Scholar
  28. [28]
    Guo, Y. G.; Hu, J.S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.CrossRefGoogle Scholar
  29. [29]
    Park, M. S.; Wang, G. X.; Kang, Y. K.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 46, 750–753.CrossRefGoogle Scholar
  30. [30]
    Park, M. S.; Kang, Y. M.; Wang, G. X.; Dou, S. X.; Liu, H. K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455–461.CrossRefGoogle Scholar
  31. [31]
    Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Niu, Z. W.; Bruchman, M. A.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.CrossRefGoogle Scholar
  33. [33]
    Li, Y. G.; Wu, Y. Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Res. 2009, 2, 54–60.CrossRefGoogle Scholar
  34. [34]
    Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367.CrossRefPubMedGoogle Scholar
  35. [35]
    Armstrong, A. R.; Paterson, A. J.; Robertson, A. D.; Bruce, P. G. Nonstoichiometric layered LixMnyO2 with a high capacity for lithium intercalation/deintercalation. Chem. Mater. 2002, 14, 710–719.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Xiaoling Xiao
    • 1
  • Li Wang
    • 2
  • Dingsheng Wang
    • 1
  • Xiangming He
    • 2
  • Qing Peng
    • 1
  • Yadong Li
    • 1
    • 3
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
  3. 3.State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingChina

Personalised recommendations