Nano Research

, 2:891

Fine tuning of the sizes and phases of ZrO2 nanocrystals

Open Access
Research Article

Abstract

Monodisperse and pure phase zirconia (tetragonal: T-ZrO2; monoclinic: M-ZrO2) nanocrystals with finely tuned sizes as well as ultrathin T-ZrO2 nanowires have been selectively synthesized by a facile solvothermal method. For the first time, a diagram of the size to effective strain was mapped for both T-ZrO2 and M-ZrO2, which gives a good explanation for the size- and cation doping-dependent stability of the two phases on the sub-10 nm scale. This work may expand our understanding of the phase properties of not only zirconia, but also various other polymorphic nanocrystals.

Keywords

Nanocrystals polymorphism phase stability 

Supplementary material

12274_2009_9092_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Garvie, R. C.; Hannink, R. H.; Pascoe, R. T. Ceramic steel. Nature 1975, 258, 703–704.CrossRefADSGoogle Scholar
  2. [2]
    Hirvonen, A.; Nowak, R.; Yamamoto, Y.; Sekino, T.; Niihara, K. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J. Eur. Ceram. Soc. 2006, 26, 1497–1505.CrossRefGoogle Scholar
  3. [3]
    Duszovda, A.; Dusza, J.; Tomasek, K.; Blugan, G.; Kuebler, J. Microstructure and properties of carbon nanotube/zirconia composite. J. Eur. Ceram. Soc. 2008, 28, 1023–1027.CrossRefGoogle Scholar
  4. [4]
    Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. Alcohol dehydration reactions over tungstated zirconia catalysts. J. Catal. 1997, 169, 67–75.CrossRefGoogle Scholar
  5. [5]
    Wilson, N. G.; McCreedy, T. On-chip catalysis using a lithographically fabricated glass microreactor—The dehydration of alcohols using sulfated zirconia. Chem. Commun. 2000, 733–734.Google Scholar
  6. [6]
    Weigel, J.; Koeppel, R. A.; Baiker, A.; Wokaun, A. Surface species in CO and CO2 hydrogenation over copper/zirconia: On the methanol synthesis mechanism. Langmuir 1996, 12, 5319–5329.CrossRefGoogle Scholar
  7. [7]
    Kuba, S.; Gates, B. C.; Grasselli, R. K.; Knozinger, H. An active and selective alkane isomerization catalyst: Iron- and platinum-promoted tungstated zirconia. Chem. Commun. 2001, 321–322.Google Scholar
  8. [8]
    Wang, S. B.; Murata, K.; Hayakawa, T.; Hamakawa, S.; Suzuki, K. Selective oxidation of ethane and propane over sulfated zirconia-supported nickel oxide catalysts. J. Chem. Technol. Biotechnol. 2001, 76, 265–272.CrossRefGoogle Scholar
  9. [9]
    Li, W. Z.; Huang, H.; Li, H. J.; Zhang, W.; Liu, H. C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 2008, 24, 8358–8366.CrossRefPubMedGoogle Scholar
  10. [10]
    Yamaguchi, T.; Hightower, J. W. Hydrogenation of 1,3-butadiene with 1,3-cyclohexadiene and molecular deuterium over zirconium dioxide catalysts. J. Am. Chem. Soc. 1977, 99, 4201–4203.CrossRefGoogle Scholar
  11. [11]
    Arata, K.; Akutagawa, S.; Tanabe, K. Epoxide rearrangement III. Isomerization of 1-methylcyclohexene oxide over TiO2-ZrO2, NiSO4 and FeSO4. Bull. Chem. Soc. Jpn. 1976, 49, 390–393.CrossRefGoogle Scholar
  12. [12]
    Nakano, Y.; Iizuka, T.; Hattori, H.; Tanabe, K. Surface properties of zirconium oxide and its catalytic activity for isomerization of 1-butene. J. Catal. 1979, 57, 1–10.CrossRefGoogle Scholar
  13. [13]
    Stichert, W.; Schuth, F.; Kuba, S.; Knozinger, H. Monoclinic and tetragonal high surface area sulfated zirconias in butane isomerization: CO adsorption and catalytic results. J. Catal. 2001, 198, 277–285.CrossRefGoogle Scholar
  14. [14]
    He, D. P.; Ding, Y. I.; Luo, H. Y.; Li, C. Effects of zirconia phase on the synthesis of higher alcohols over zirconia and modified zirconia. J. Mol. Catal. A 2004, 208, 267–271.CrossRefGoogle Scholar
  15. [15]
    Rhodes, M. D.; Bell, A. T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies. J. Catal. 2005, 233, 198–209.CrossRefGoogle Scholar
  16. [16]
    Mamak, M.; Coombs, N.; Ozin, G. A. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: A new class of solid oxide fuel cell electrode materials. Adv. Funct. Mater. 2001, 11, 59–63.CrossRefGoogle Scholar
  17. [17]
    Can, Z. Y.; Narita, H.; Mizusaki, J.; Tagawa, H. Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ionics 1995, 79, 344–348.CrossRefGoogle Scholar
  18. [18]
    Liu, G. D.; Lin, Y. H. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894–5901.CrossRefPubMedGoogle Scholar
  19. [19]
    Izumi, K.; Murakami, M.; Deguchi, T.; Morita, A.; Tohge, N.; Minami, T. Zirconia coating on stainless steel sheets from organozirconium compounds. J. Am. Ceram. Soc. 1989, 72, 1465–1468.CrossRefGoogle Scholar
  20. [20]
    Taylor, D. P.; Simpson, W. C.; Knutsen, K.; Henderson, M. A.; Orlando, T. M. Photon stimulated desorption of cations from yttria-stabilized cubic ZrO2 (100). Appl. Surf. Sci. 1998, 127, 101–104.CrossRefADSGoogle Scholar
  21. [21]
    Dutta, G.; Hembram, K. P. S. S.; Rao, G. M.; Waghmare, U. V. Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study. Appl. Phys. Lett. 2006, 89, 202904.CrossRefADSGoogle Scholar
  22. [22]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solutionbased synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  23. [23]
    Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1–29.CrossRefGoogle Scholar
  24. [24]
    Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.CrossRefGoogle Scholar
  25. [25]
    Piticescu, R. R.; Monty, C.; Taloi, D.; Motoc, A.; Axinte, S. Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 2001, 21, 2057–2060.CrossRefGoogle Scholar
  26. [26]
    Bokhimi, X.; Morales, A.; Novaro, O.; Portilla, M.; Lopez, T.; Tzompantzi, F.; Gomez, R. Tetragonal nanophase stabilization in nondoped sol-gel zirconia prepared with different hydrolysis catalysts. J. Solid State Chem. 1998, 135, 28–35.CrossRefADSGoogle Scholar
  27. [27]
    Mueller, R.; Jossen, R.; Pratsinis, S. E.; Watson, M.; Akhtar, M. K. Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 2004, 87, 197–202.CrossRefGoogle Scholar
  28. [28]
    Zyryanov, V. V.; Uvarov, N. F.; Sadykov, V. A. Mechanochemical synthesis of solid solutions based on ZrO2 and their electrical conductivity. Glass Phys. Chem. 2007, 33, 394–401.CrossRefGoogle Scholar
  29. [29]
    Tang, K. J.; Zhang, J. N.; Yan, W. F.; Li, Z. H.; Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Sun, T. L.; Fuchs, H. One-step controllable synthesis for high-quality ultrafine metal oxide semiconductor nanocrystals via a separated two-phase hydrolysis reaction. J. Am. Chem. Soc. 2008, 130, 2676–2680.CrossRefPubMedGoogle Scholar
  30. [30]
    Joo, J.; Yu, T.; Kim, Y. W.; Park, H. M.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557.CrossRefPubMedGoogle Scholar
  31. [31]
    Zhao, N. N.; Pan, D. C.; Nie, W.; Ji, X. L. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. J. Am. Chem. Soc. 2006, 128, 10118–10124.CrossRefPubMedGoogle Scholar
  32. [32]
    Filipovich, V. N.; Kalinina, A. M. The Structure of Glass; Toropov, N. A, Porai Koshits, E. A., Eds.; Consultants Bureau: New York, 1965; Vol. 5, pp 34–38.Google Scholar
  33. [33]
    Garvie, R. C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 1965, 69, 1238–1243.CrossRefGoogle Scholar
  34. [34]
    Holmes, H. F.; Fuller, E. L.; Gammage R. B. Heats of immersion in the zirconium oxide-water system. J. Phys. Chem. 1972, 76, 1497–1502.CrossRefGoogle Scholar
  35. [35]
    Bailey, J. E.; Lewis, D.; Librant, Z. M.; Porter, L. J. Phase transformations in milled zirconia. Trans. J. Brit. Ceram. Soc. 1972, 71, 25–30.Google Scholar
  36. [36]
    Mitsuhashi, T.; Ichihara, M.; Tatsuke, U. Characterization and stabilization of metastable tetragonal ZrO2. J. Am. Ceram. Soc. 1974, 57, 97–101.CrossRefGoogle Scholar
  37. [37]
    Garvie, R. C. Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 1978, 82, 218–224.CrossRefGoogle Scholar
  38. [38]
    Garvie, R. C.; Goss, M. F. Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. J. Mater. Sci. 1986, 21, 1253–1257.CrossRefADSGoogle Scholar
  39. [39]
    de Gennes, P. G. Polymers at an interface: A simplified view. Adv. Colloid Interface Sci. 1987, 27, 189–209.CrossRefGoogle Scholar
  40. [40]
    Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: Ordered “soft spheres”. J. Phys. Chem. B 1998, 102, 8379–8388.CrossRefGoogle Scholar
  41. [41]
    Sinyagin, A. Y.; Belov, A.; Tang, Z. Y.; Kotov, N. A. Monte Carlo computer simulation of chain formation from nanoparticles. J. Phys. Chem. B 2006, 110, 7500–7507.CrossRefPubMedGoogle Scholar
  42. [42]
    Zhang, S. S.; Leem, G.; Srisombat, L. O.; Lee, T. R. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution. J. Am. Chem. Soc. 2008, 130, 113–120.CrossRefPubMedGoogle Scholar
  43. [43]
    Shen, S. L.; Zhuang, J.; Xu, X. X.; Nisar, A.; Hu, S.; Wang, X. Size effects in oriented-attachment growth process: The case of Cu nanoseeds. Inorg. Chem. 2009, 48, 5117–5128.CrossRefPubMedGoogle Scholar
  44. [44]
    Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–12535.CrossRefPubMedGoogle Scholar
  45. [45]
    Xu, X. X.; Wang, X. Size- and surface-determined transformations: From ultrathin InOOH nanowires to uniform c-In2O3 nanocubes and rh-In2O3 nanowires. Inorg. Chem. 2009, 48, 3890–3895.CrossRefPubMedGoogle Scholar
  46. [46]
    Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041–2044.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.CrossRefPubMedGoogle Scholar
  48. [48]
    Ingel, R. P.; Lewis, D. Lattice parameters and density for Y2O3-stabilized ZrO2. J. Am. Ceram. Soc. 1986, 69, 325–332.CrossRefGoogle Scholar
  49. [49]
    Stefanovich, E. V.; Shluger, A. L.; Catlow, C. R. A. Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. Phys. Rev. B: Condens. Matter 1994, 49, 11560–11571.ADSGoogle Scholar
  50. [50]
    Hall, W. H. X-ray line broadening in metals. Proc. Phys. Soc. London, Sect. A 1949, 62, 741–743.CrossRefADSGoogle Scholar
  51. [51]
    Williamson, G. K.; Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31.CrossRefGoogle Scholar
  52. [52]
    Kang, J. Y.; Tsunekawa, S.; Kasuya. A. Ultraviolet absorption spectra of amphoteric SnO2 nanocrystallites. Appl. Surf. Sci. 2001, 174, 306–309.CrossRefADSGoogle Scholar
  53. [53]
    Bendoraitis, J. G.; Salomon, R. E. Optical energy gap in the monoclinic oxides of hafnium and zirconium and their solid solutions. J. Phys. Chem. 1965, 69, 3660–3667.CrossRefGoogle Scholar
  54. [54]
    Emeline, A.; Kataeva, G. V.; Litke, A. S.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Spectroscopic and photoluminescence studies of a wide band gap insulating material: Powdered and colloidal ZrO2 sols. Langmuir 1998, 14, 5011–5022.CrossRefGoogle Scholar
  55. [55]
    Nishikawa, H.; Watanabe, E.; Ito, D.; Ohki, Y. Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2. Phys. Rev. Lett. 1994, 72, 2101–2104.CrossRefPubMedADSGoogle Scholar
  56. [56]
    Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269–1273.CrossRefPubMedADSGoogle Scholar
  57. [57]
    Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. I.; Kim, Y. W.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.CrossRefPubMedGoogle Scholar
  58. [58]
    Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurii, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations