Nano Research

, Volume 2, Issue 11, pp 882–890 | Cite as

Selective cytotoxic effect of ZnO nanoparticles on glioma cells

  • Stella Ostrovsky
  • Gila Kazimirsky
  • Aharon Gedanken
  • Chaya Brodie
Open Access
Research Article

Abstract

In this study we examined the cytotoxic effect of ZnO nanoparticles on various human cancer and normal cells. We found that the ZnO nanoparticles exerted a cytotoxic effect on the human glioma cell lines A172, U87, LNZ308, LN18, and LN229, whereas no cytotoxic effect was observed on normal human astrocytes. Similarly, the ZnO nanoparticles induced cell death in breast and prostate cancer cell lines while no major effect was observed in the respective normal breast and prostate cell lines. Using the fluorescent dye 2,7-dichlorofluorescein diacetate, we found that treatment of the glioma cells with ZnO nanoparticles induced a large increase in the generation of reactive oxygen species (ROS) and treatment of the cells with N-acetyl cysteine decreased the cytotoxic effect of the ZnO nanoparticles. In contrast, a smaller effect on ROS generation was observed in the normal astrocytes. These results suggest that ZnO nanoparticles may be employed as a selective cytotoxic agent for the eradication of cancer cells.

Keywords

ZnO nanoparticles sonochemistry cancer cells 

References

  1. [1]
    Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896.CrossRefPubMedGoogle Scholar
  2. [2]
    Szabo, T.; Nemeth, J.; Dekany, I. Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Coll. Surf. A 2003, 230, 23–35.CrossRefGoogle Scholar
  3. [3]
    Yamamoto, O.; Hotta, M.; Sawai, J.; Sasamoto, T.; Kojima, H. Influence of powder characteristic of ZnO on antibacterial activity — Effect of specific surface area. J. Ceram. Soc. Jpn. 1998, 106, 1007–1011.Google Scholar
  4. [4]
    Sanson, M.; Thillet, J.; Hoang-Xuan, K. Molecular changes in gliomas. Curr. Opin. Oncol. 2004, 16, 607–613.CrossRefPubMedGoogle Scholar
  5. [5]
    Ahmed Rasheed, B. K.; Wiltshire, R. N.; Bigner, S. H.; Bigner, D. D. Molecular pathogenesis of malignant gliomas. Curr. Opin. Oncol. 1999, 11, 162–167.CrossRefGoogle Scholar
  6. [6]
    Prados, M. D.; Levin, V. Biology and treatment of malignant glioma. Semin. Oncol. 2000, 27, 1–10.PubMedGoogle Scholar
  7. [7]
    Suslick, K. S.; Hammerton, D. A.; Cline, R. E. The sonochemical hot spot. J. Am. Chem. Soc. 1986, 108, 5641–5642.CrossRefGoogle Scholar
  8. [8]
    Suslick, K. S. The chemical effects of ultrasound. Sci. Am. 1989, 260, 80–86.CrossRefGoogle Scholar
  9. [9]
    Wang, H.; Joseph, J. A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616.CrossRefPubMedGoogle Scholar
  10. [10]
    Winterbourn, C. C.; Sutton, H. C. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: Catalytic requirements and oxygen dependence. Arch Biochem. Biophys. 1984, 235, 116–126.CrossRefPubMedGoogle Scholar
  11. [11]
    Boudreau, R. T. M.; Conrad, D. M.; Hoskin, D. W. Differential involvement of reactive oxygen species in apoptosis caused by the inhibition of protein phosphatase 2A in Jurkat and CCRF CEM human T-leukemia cells. Exp. Mol. Pathol. 2007, 83, 347–356.PubMedGoogle Scholar
  12. [12]
    Decaudin, D.; Marzo, I.; Brenner, C.; Kroemer, G. Mitochondria in chemotherapy-induced apoptosis: A prospective novel target of cancer therapy. Int. J. Oncol. 1998, 12, 141–152.PubMedGoogle Scholar
  13. [13]
    Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R. Nel. A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Evaluation of growth inhibitory effect of ceramic powder slurry on bacteria by conductance method. J. Chem. Eng. Jpn. 1995, 28, 288–293.CrossRefGoogle Scholar
  15. [15]
    Bhattacharyya, S.; Gedanken, A. A template-free, sonochemical route to porous ZnO nano-disks. Micropor. Mesopor. Mater. 2008, 110, 553–559.CrossRefGoogle Scholar
  16. [16]
    Soule, H. D.; Maloney, T. M.; Wolman, S. R.; Peterson, Jr., W. D.; Brenz, Jr., R.; McGrath, C. M.; Russo, J.; Pauley, R. J.; Jones, R. F.; Brooks, S. C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50, 6075–6086.PubMedGoogle Scholar
  17. [17]
    Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008, 68, 1777–1785.CrossRefPubMedGoogle Scholar
  18. [18]
    Blass, M.; Kronfeld, I.; Kazimirsky, G.; Blumberg, P. M.; Brodie, C. Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etopo side. Mol. Cell Biol. 2002, 22, 182–195.CrossRefPubMedGoogle Scholar
  19. [19]
    Okhrimenko, H.; Lu, W.; Xiang, C. L.; Ju, D. H.; Blumberg, P. M.; Gomel, R.; Kazimirsky, G.; Brodie, C. Roles of tyrosine phosphorylation and cleavage of protein kinase Cδ in its protective effect against tumor necrosis factorrelated apoptosis inducing ligand-induced apoptosis. J. Biol. Chem. 2005, 280, 23643–23652.CrossRefPubMedGoogle Scholar
  20. [20]
    Wacker, W. E. C.; Ulmer, D. D.; Vallee, B. L. Metalloenzymes and myocardial infarction. New Engl. J. Med. 1956, 255, 450–456.PubMedGoogle Scholar
  21. [21]
    Lin, W. S.; Huang, Y. W.; Zhou, X. D.; Ma, Y. F. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Stella Ostrovsky
    • 1
  • Gila Kazimirsky
    • 2
  • Aharon Gedanken
    • 1
  • Chaya Brodie
    • 2
  1. 1.Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University Center for Advanced Materials and NanotechnologyBar-Ilan UniversityRamat-GanIsrael
  2. 2.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations