Nano Research

, 2:872 | Cite as

Process intensification by CO2 for high quality carbon nanotube forest growth: Double-walled carbon nanotube convexity or single-walled carbon nanotube bowls?

Open Access
Research Article


Introduction of CO2 is a facile way to tune the growth of vertically aligned double- or single-walled carbon nanotube (CNT) forests on wafers. In the absence of CO2, a double-walled CNT convexity was obtained. With increasing concentration of CO2, the morphologies of the forests transformed first into radial blocks, and finally into bowl-shaped forests. Furthermore, the wall number and diameter distribution of the CNTs were also modulated by varying the amount of CO2. With increasing CO2 concentration, CNTs with fewer wall number and smaller diameter were obtained. The addition of CO2 is speculated to generate water and serve as a weak oxidant for high quality CNT growth. It can tune the growth rate and the morphologies of the forests, prevent the formation of amorphous carbon, and reduce the wall number of the CNTs.


Carbon nanotube forest carbon dioxide chemical vapor deposition self organization process intensification 

Supplementary material

12274_2009_9088_MOESM1_ESM.pdf (456 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Dai, L. M.; Patil, A.; Gong, X. Y.; Guo, Z. X.; Liu, L. Q.; Liu, Y.; Zhu, D. B. Aligned nanotubes. ChemPhysChem 2003, 4, 1150–1169.CrossRefPubMedGoogle Scholar
  4. [4]
    Qu, L. T.; Dai, L. M.; Stone, M.; Xia, Z. H.; Wang, Z. L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008, 322, 238–242.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Zhang, Q.; Xu, G. H.; Huang, J. Q.; Zhou, W. P.; Zhao, M. Q.; Wang, Y.; Qian, W. Z.; Wei, F. Fluffy carbon nanotubes produced by shearing vertically aligned carbon nanotube arrays. Carbon 2009, 47, 538–541.CrossRefGoogle Scholar
  7. [7]
    Dai, H. J.; Javey, A.; Pop, E.; Mann, D.; Kim, W.; Lu, Y. R. Electrical transport properties and field effect transistors of carbon nanotubes. Nano 2006, 1, 1–13.MATHCrossRefGoogle Scholar
  8. [8]
    Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950.CrossRefGoogle Scholar
  9. [9]
    Zhong, G. F.; Iwasaki, T.; Robertson, J.; Kawarada, H. Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1907–1910.CrossRefPubMedGoogle Scholar
  10. [10]
    Chakrabarti, S.; Kume, H.; Pan, L. J.; Nagasaka, T.; Nakayama, Y. Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. J. Phys. Chem. C 2007, 111, 1929–1934.CrossRefGoogle Scholar
  11. [11]
    Patole, S. P.; Alegaonkar, P. S.; Shin, H. C.; Yoo, J. B. Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J. Phys. D: Appl. Phys. 2008, 41, 155311.CrossRefADSGoogle Scholar
  12. [12]
    Xiong, G. Y.; Wang, D. Z.; Ren, Z. F. Aligned millimeterlong carbon nanotube arrays grown on single crystal magnesia. Carbon 2006, 44, 969–973.CrossRefGoogle Scholar
  13. [13]
    Zhao, B.; Futaba, D. N.; Yasuda, S.; Akoshima, M.; Yamada, T.; Hata, K. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 2009, 3, 108–114.CrossRefPubMedGoogle Scholar
  14. [14]
    Zhong, G. F.; Iwasaki, T.; Kawarada, H. Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon 2006, 44, 2009–2014.CrossRefGoogle Scholar
  15. [15]
    Lee, D. H.; Lee, W. J.; Kim, S. O. Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays. Nano Lett. 2009, 9, 1427–1432.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Iwasaki, T.; Maki, T.; Yokoyama, D.; Kumagai, H.; Hashimoto, Y.; Asari, T.; Kawarada, H. Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Stat. Sol. (RRL) 2008, 2, 53–55.CrossRefGoogle Scholar
  17. [17]
    Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Xu, G. H.; Wang, D. Z. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis. Powder Technol. 2008, 183, 10–20.CrossRefGoogle Scholar
  18. [18]
    Wu, Z. P.; Wang, J. N.; Ma, J. Methanol-mediated growth of carbon nanotubes. Carbon 2009, 47, 324–327.CrossRefGoogle Scholar
  19. [19]
    Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. P. Natl. Acad. Sci. USA 2005, 102, 16141–16145.CrossRefADSGoogle Scholar
  20. [20]
    Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.CrossRefADSGoogle Scholar
  21. [21]
    Sugime, H.; Noda, S.; Maruyama, S.; Yamaguchi, Y. Multiple “optimum” conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon 2009, 47, 234–241.CrossRefGoogle Scholar
  22. [22]
    Amama, P. B.; Pint, C. L.; McJilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R. H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 2009, 9, 44–49.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K. Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 2008, 8, 4288–4292.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Liu, J. X.; Ren, Z.; Duan, L. Y.; Xie, Y. C. Effects of H2O on preparation of single-wall carbon nanotubes (SWCNTs) by catalytic decomposition of CH4 in Ar. Acta Chim. Sinica 2004, 62, 775–782.Google Scholar
  26. [26]
    Zhu, L. B.; Sun, Y. Y.; Hess, D. W.; Wong, C. P. Wellaligned open-ended carbon nanotube architectures: An approach for device assembly. Nano Lett. 2006, 6, 243–247.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Zhu, L. B.; Xiu, Y. H.; Hess, D. W.; Wong, C. P. Aligned carbon nanotube stacks by water-assisted selective etching. Nano Lett. 2005, 5, 2641–2645.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Wen, Q.; Qian, W. Z.; Wei, F.; Liu, Y.; Ning, G. Q.; Zhang, Q. CO2-assisted SWNT growth on porous catalysts. Chem. Mater. 2007, 19, 1226–1230.CrossRefGoogle Scholar
  29. [29]
    Li, Z. R.; Xu, Y.; Ma, X. D.; Dervishi, E.; Saini, V.; Biris, A. R.; Lupu, D.; Biris, A. S. CO2 enhanced carbon nanotube synthesis from pyrolysis of hydrocarbons. Chem. Commun. 2008, 3260–3262.Google Scholar
  30. [30]
    Wu, J.; Ma, Y. F.; Tang, D. M.; Liu, C.; Huang, Q. W.; Huang, Y.; Cheng, H. M.; Chen, D. P.; Chen, Y. S. Enhancement of field emission of CNTs array by CO2-assisted chemical vapor deposition. J. Nanosci. Nanotechnol. 2009, 9, 3046–3051.CrossRefPubMedGoogle Scholar
  31. [31]
    Pint, C. L.; Pheasant, S. T.; Parra-Vasquez, A. N. G.; Horton, C.; Xu, Y. Q.; Hauge, R. H. Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 4125–4133.CrossRefGoogle Scholar
  32. [32]
    Zhang, Q.; Zhou, W. P.; Qian, W. Z.; Xiang, R.; Huang, J. Q.; Wang, D. Z.; Wei, F. Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process. J. Phys. Chem. C 2007, 111, 14638–14643.CrossRefGoogle Scholar
  33. [33]
    Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 2008, 46, 1152–1158.CrossRefGoogle Scholar
  34. [34]
    Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Sizeselective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Hart, A. J.; van Laake, L.; Slocum, A. H. Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 2007, 3, 772–777.CrossRefPubMedGoogle Scholar
  36. [36]
    Nessim, G. D.; Hart, A. J.; Kim, J. S.; Acquaviva, D.; Oh, J. H.; Morgan, C. D.; Seita, M.; Leib, J. S.; Thompson, C. V. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett. 2008, 8, 3587–3593.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Meshot, E. R.; Hart, A. J. Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 2008, 92, 113107.CrossRefADSGoogle Scholar
  38. [38]
    Li, X. S.; Ci, L.; Kar, S.; Soldano, C.; Kilpatrick, S. J.; Ajayan, P. M. Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon 2007, 45, 847–851.CrossRefGoogle Scholar
  39. [39]
    Feng, X. F.; Liu, K.; Xie, X.; Zhou, R. F.; Zhang, L. N.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. J. Phys. Chem. C 2009, 113, 9623–9631.CrossRefGoogle Scholar
  40. [40]
    Yasuda, S.; Hiraoka, T.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity. Nano Lett. 2009, 9, 769–773.CrossRefPubMedADSGoogle Scholar
  41. [41]
    Xiang, R.; Yang, Z.; Zhang, Q.; Luo, G. H.; Qian, W. Z.; Wei, F.; Kadowaki, M.; Einarsson, E.; Maruyama, S. Growth deceleration of vertically aligned carbon nanotube arrays: Catalyst deactivation or feedstock diffusion controlled? J. Phys. Chem. C 2008, 112, 4892–4896.CrossRefGoogle Scholar
  42. [42]
    Pint, C. L.; Xu, Y. Q.; Pasquali, M.; Hauge, R. H. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2008, 2, 1871–1878.CrossRefPubMedGoogle Scholar
  43. [43]
    Pint, C. L.; Pheasant, S. T.; Pasquali, M.; Coulter, K. E.; Schmidt, H. K.; Hauge, R. H. Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates. Nano Lett. 2008, 8, 1879–1883.CrossRefPubMedADSGoogle Scholar
  44. [44]
    Zhang, Q.; Zhao, M. Q.; Liu, Y.; Cao, A. Y.; Qian, W. Z.; Lu, Y. F.; Wei, F. Energy-absorbing hybrid composites based on alternate carbon nanotube and inorganic layers. Adv. Mater. 2009, 21, 2876–2880.CrossRefGoogle Scholar
  45. [45]
    Pint, C. L.; Alvarez, N. T.; Hauge, R. H. Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces. Nano Res. 2009, 2, 526–534.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Jiaqi Huang
    • 1
  • Qiang Zhang
    • 1
  • Mengqiang Zhao
    • 1
  • Fei Wei
    • 1
  1. 1.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations