Nano Research

, 2:857 | Cite as

Water-controlled synthesis of low-dimensional molecular crystals and the fabrication of a new water and moisture indicator

Open Access
Research Article

Abstract

Arrays of low-dimensional molecular crystals of square columns (1-D) and nanolamellae (2-D) of Zn[TCNQ]2(H2O)2 with large areas (up to 10 20 cm2) have been synthesized by controlled addition of water to Zn and TCNQ. Based on the ability to accurately control the reaction, a new moisture and water indicator has been developed. The simple method, the large areas of material prepared, the fine size tuning, and the typical semiconductor behavior of the resulting low-dimensional molecular materials promise applications in molecular electronics as well as nanoelectronics. The system is an effective indicator for the detection of traces of water and moisture.

Keywords

Molecular materials molecular crystals nanomaterials water indicator 

Supplementary material

12274_2009_9084_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Acker, D. S.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Melby, L. R.; Benson, R. E.; Mochel, W. E. 7,7,8,8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives. J. Am. Chem. Soc. 1960, 82, 6408–6409.CrossRefGoogle Scholar
  2. [2]
    Wheland, R. C.; Gillson, J. L. Synthesis of electrically conductive organic solids. J. Am. Chem. Soc. 1976, 98, 3916–3925.CrossRefGoogle Scholar
  3. [3]
    Kathirgamanathan, P.; Rosseinsky, D. R. Electrocrystallized metal-tetracyanoquinodimethane salts with high electrical-conductivity. J. Chem. Soc., Chem. Commun. 1980, 17, 839–840.CrossRefGoogle Scholar
  4. [4]
    Bolinger, C. M.; Darkwa, J.; Gammie, G.; Gammon, S. D.; Lyding, J. W.; Rauchfuss, T. B.; Wilson, S. R. Synthesis, structure, and electrical properties of [(MeCp)5V5S6][(TCNQ)2]. Organomet. 1986, 5, 2386–2388.CrossRefGoogle Scholar
  5. [5]
    Kulys, J.; Drungiliene, A. Electrocatalytic oxidation of ascorbic acid at chemically modified electrodes. Electroanal. 1991, 3, 209–214.CrossRefGoogle Scholar
  6. [6]
    Murthy, A. S. N.; Anita, G. R. L. NADH sensor with electrochemically modified TCNQ electrode. Anal. Chim. Acta 1994, 289, 43–46.CrossRefGoogle Scholar
  7. [7]
    Wooster, T. J.; Bond, A. M.; Honeychurch, M. J. An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Anal. Chem. 2003, 75, 586–592.CrossRefPubMedGoogle Scholar
  8. [8]
    Wooster, T. J.; Bond, A. M. Ion selectivity obtained under voltammetric conditions when a TCNQ chemically modified electrode is presented with aqueous solutions containing tetraalkylammonium cations. Analyst 2003, 128, 1386–1390.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Okamoto, T.; Kozaki, M.; Doe, M.; Uchida, M.; Wang, G.; Okada, K. 1,4-Benzoxazino[2,3-b]phenoxazine and its sulfur analogues: Synthesis, properties, and application to organic light-emitting diodes. Chem. Mater. 2005, 17, 5504–5511.CrossRefGoogle Scholar
  10. [10]
    Mueller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ non-volatile memories for integration in the CMOS backend-of-line: Preparation from gas/solid reaction and downscaling to an area of 0.25 µm2. Solid State Electron. 2006, 50, 601–605.CrossRefADSGoogle Scholar
  11. [11]
    Heintz, R. A.; Zhao, H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.CrossRefGoogle Scholar
  12. [12]
    Neufeld, A. K.; Madsen, I.; Bond, A. M.; Hogan, C. F. Phase, morphology, and particle size changes associated with the solid solid electrochemical interconversion of TCNQ and semiconducting CuTCNQ (TCNQ = tetracyanoquinodimethane). Chem. Mater. 2003, 15, 3573–2585.CrossRefGoogle Scholar
  13. [13]
    Neufeld, A. K.; O’Mullane, A. P.; Bond, A. M. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy. J. Am. Chem. Soc. 2005, 127, 13846–13853.CrossRefPubMedGoogle Scholar
  14. [14]
    O’Mullane, A. P.; Neufeld, A. K.; Bond, A. M. Distinction of the two phases of CuTCNQ by scanning electrochemical microscopy. Anal. Chem. 2005, 77, 5447–5452.CrossRefPubMedGoogle Scholar
  15. [15]
    O’Mullane, A. P.; Neufeld, A. K.; Harris, A. R.; Bond, A. M. Electrocrystallization of phase I, CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), on indium tin oxide and boron-doped diamond electrodes. Langmuir 2006, 22, 10499–10505.CrossRefPubMedGoogle Scholar
  16. [16]
    Siedle, A. R.; Candela, G. A.; Finnegan, T. F. Transitionmetal derivatives of the teracyanoquinodimethane ion, TCNQ2−. Inorg. Chim. Acta 1979, 35, 125–130.CrossRefGoogle Scholar
  17. [17]
    Nafady, A.; O’Mullane, A. P.; Bond, A. M.; Neufeld, A. K. Morphology changes and mechanistic aspects of the electrochemically-induced reversible solid solid transformation of microcrystalline TCNQ into Co[TCNQ]2-based materials (TCNQ = 7,7,8,8-tetracyanoquino dimethane). Chem. Mater. 2006, 18, 4375–4384.CrossRefGoogle Scholar
  18. [18]
    Clerac, R.; O’Kane, S.; Cowen, J.; Ouyang, X.; Heintz, R.; Zhao, H.; Bazile, M. J.; Dunbar, Jr. K. R. Glassy magnets composed of metals coordinated to 7,7,8,8-tetracyanoq uinodimethane: M(TCNQ)2 (M = Mn, Fe, Co, Ni). Chem. Mater. 2003, 15, 1840–1850.CrossRefGoogle Scholar
  19. [19]
    Nafady, A.; Bond, A. M.; Bilyk, M. A.; Harris, A. R.; Bhatt, A. I.; O’Mullane, A. P.; Marco, R. D. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films. J. Am. Chem. Soc. 2007, 129, 2369–2382.CrossRefPubMedGoogle Scholar
  20. [20]
    Goh, S. H.; Lee, S. Y.; Zhou, X.; Tan, K. L. X-ray photoelectron spectroscopic studies of interactions between poly(4-vinylpyridine) and poly(styrenesulfonate) salts. Macromolecules 1998, 31, 4260–4264.CrossRefADSGoogle Scholar
  21. [21]
    Potember, R. S.; Poehler, T. O.; Cowan, D. O.; Carter, F. L.; Brant, P. I. In Molecular Electronic Devices; Carter, F. L., Eds.; Marcel Dekker: New York, 1982.Google Scholar
  22. [22]
    Ikemoto, I.; Thomas, J. M.; Kuroda, H. X-ray photoelectron spectra of copper-tetracyanoquinodimethane complexes. Bull. Chem. Soc. Jpn. 1973, 46, 2237–2238.CrossRefGoogle Scholar
  23. [23]
    Khatkale, K. S.; Devlin, J. P. The vibrational and electronic spectra of the mono-, di-, and trianon salts of TCNQ. J. Chem. Phys. 1979, 70, 1851–1859.CrossRefADSGoogle Scholar
  24. [24]
    Zhao, H.; Heintz, R. A.; Ouyang, X.; Dunbar, K. R.; Campana, C. F.; Rogers, R. D. Spectroscopic, thermal, and magnetic properties of metal/TCNQ network polymers with extensive supramolecular interactions between layers. Chem. Mater. 1999, 11, 736–746.CrossRefGoogle Scholar
  25. [25]
    Melby, L. R.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Benson R. E. Substituted quinodimethans, II. Anionradical derivatives and complexes of 7,7,8,8-tetracyano quinodimethan. J. Am. Chem. Soc. 1962, 84, 3374–3387.CrossRefGoogle Scholar
  26. [26]
    Jeanmaire, D. L.; van Duyne, R. P. Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical. J. Am. Chem. Soc. 1976, 98, 4029–4033.CrossRefGoogle Scholar
  27. [27]
    Gong, J. P.; Osada, Y. Preparation of polymeric metaltetracyanoquinodimethane film and its bistable switching. Appl. Phys. Lett. 1992, 61, 2787–2789.CrossRefADSGoogle Scholar
  28. [28]
    Liu, S.; Liu, Y.; Wu, P.; Zhu, D. Multifaceted study of CuTCNQ thin-film materials. Fabrication, morphology, and spectral and electrical switching properties. Chem. Mater. 1996, 8, 2779–2787.CrossRefGoogle Scholar
  29. [29]
    Liu, Y.; Ji, Z.; Tang, Q.; Jiang, L.; Li, H.; He, M.; Hu, W.; Zhang, D.; Jiang, L.; Wang, X.; Wang, C.; Liu, Y.; Zhu, D. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater. 2005, 17, 2953–2958.CrossRefGoogle Scholar
  30. [30]
    Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometersized ribbons of copper phthalocyanine. Adv. Mater. 2006, 18, 65–68.CrossRefGoogle Scholar
  31. [31]
    Lampert, M. A.; Mark, P. Current Injection in Solids; Academic Press: New York and London, 1970.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations