Nano Research

, 2:844 | Cite as

Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons

  • Lin Lai
  • Jing Lu
  • Lu Wang
  • Guangfu Luo
  • Jing Zhou
  • Rui Qin
  • Yu Chen
  • Hong Li
  • Zhengxiang Gao
  • Guangping Li
  • Wai Ning Mei
  • Yutaka Maeda
  • Takeshi Akasaka
  • Stefano Sanvito
Open Access
Research Article


A magnetic ground state is revealed for the first time in zigzag-edged carbon nanoscrolls (ZCNSs) from spinunrestricted density functional theory calculations. Unlike their flat counterpart—zigzag-edged carbon nanoribbons, which are semiconductors with spin-degenerate electronic structure—ZCNSs show a variety of magnetic configurations, namely spin-selective semiconductors, metals, semimetals, quasi-half-metals, and half-metals. To the best of our knowledge, this is the first discovery of quasi-half-metals and half-metals in a pure hydrocarbon without resort to an external electric field. In addition, we calculated the spin-dependent transportation of the semiconducting ZCNSs with 12 and 20 zigzag chains, and found that they are 13% and 17% at the Fermi level, respectively, suggesting that ZCNS can be an effective spin filter.


Carbon nanoscrolls quasi-half-metals half-metals graphene spin-selective spin filter 

Supplementary material

12274_2009_9081_MOESM1_ESM.pdf (251 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229 1232.PubMedGoogle Scholar
  6. [6]
    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 2007, 7, 2295–2299.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Kan, E. J.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.CrossRefPubMedGoogle Scholar
  10. [10]
    Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Viculis, L. M.; Mack, J. J.; Kaner, R. B. A chemical route to carbon nanoscrolls. Science 2003, 299, 1361.CrossRefPubMedGoogle Scholar
  13. [13]
    Roy, D.; Angeles-Tactay, E.; Brown, R. J. C.; Spencer, S. J.; Fry, T.; Dunton, T. A.; Young, T.; Milton, M. J. T, Synthesis and raman spectroscopic characterisation of carbon nanoscrolls. Chem. Phys. Lett. 2008, 465, 254–257.CrossRefADSGoogle Scholar
  14. [14]
    Savoskin, M. V.; Mochalin, V. N.; Yaroshenko, A. P.; Lazareva, N. I.; Konstantinova, T. E.; Barsukov, I. V.; Prokofiev, I. G. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 2007, 45, 2797–2800.CrossRefGoogle Scholar
  15. [15]
    Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Chen, Y.; Lu, J.; Gao, Z. X. Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C 2007, 111, 1625–1630.CrossRefGoogle Scholar
  17. [17]
    Braga, S. F.; Coluci, V. R.; Baughman, R. H.; Galvao, D. S. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study. Chem. Phys. Lett. 2007, 441, 78–82.CrossRefADSGoogle Scholar
  18. [18]
    Braga, S. F.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galva, D. S.; Baughman, R. H. Structure and dynamics of carbon nanoscrolls. Nano Lett. 2004, 4, 881–884.CrossRefADSGoogle Scholar
  19. [19]
    Coluci, V. R.; Braga, S. F.; Baughman, R. H.; Galvao, D. S. Prediction of the hydrogen storage capacity of carbon nanoscrolls. Phys. Rev. B 2007, 75, 125–404.Google Scholar
  20. [20]
    Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893–1897.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Pan, H.; Feng, Y. P.; Lin, J. Y. Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 2005, 72, 085415.CrossRefADSGoogle Scholar
  22. [22]
    Ordejon, P.; Artacho, E.; Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 1996, 53, R10441–R10444.CrossRefADSGoogle Scholar
  23. [23]
    Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Mat. 2002, 14, 2745–2779.CrossRefADSGoogle Scholar
  24. [24]
    Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.CrossRefADSGoogle Scholar
  25. [25]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 2006, 73, 085414.CrossRefADSGoogle Scholar
  27. [27]
    Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Martins, T. B.; da Silva, A. J. R.; Miwa, R. H.; Fazzio, A. σ- and π-defects at graphene nanoribbon edges: Building spin filters. Nano Lett. 2008, 8, 2293–2298.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Gunlycke, D.; Areshkin, D. A.; Li, J. W.; Mintmire, J. W.; White, C. T. Graphene nanostrip digital memory device. Nano Lett. 2007, 7, 3608–3611.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Enoki, T.; Kobayashi, Y. Magnetic nanographite: An approach to molecular magnetism. J. Mater. Chem. 2005, 15, 3999–4002.CrossRefGoogle Scholar
  31. [31]
    Enoki, T.; Takai, K. Unconventional electronic and magnetic functions of nanographene-based host-guest systems. Dalton Trans. 2008, 3773–3781.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Lin Lai
    • 1
  • Jing Lu
    • 1
    • 2
  • Lu Wang
    • 1
  • Guangfu Luo
    • 1
  • Jing Zhou
    • 1
  • Rui Qin
    • 1
  • Yu Chen
    • 1
  • Hong Li
    • 1
  • Zhengxiang Gao
    • 1
  • Guangping Li
    • 3
  • Wai Ning Mei
    • 2
  • Yutaka Maeda
    • 4
    • 5
  • Takeshi Akasaka
    • 6
  • Stefano Sanvito
    • 7
  1. 1.State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijingChina
  2. 2.University of Nebraska at OmahaOmahaUSA
  3. 3.SICAS CenterOneontaUSA
  4. 4.Department of ChemistryTokyo Gakugei UniversityTokyoJapan
  5. 5.PRESTOJapan Science and Technology AgencySaitamaJapan
  6. 6.Center for Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan
  7. 7.School of Physics and CRANNTrinity CollegeDublin 2Ireland

Personalised recommendations