Nano Research

, 2:755 | Cite as

Milestones in molecular dynamics simulations of single-walled carbon nanotube formation: A brief critical review

Open Access
Review Article


We present a brief review of the most important efforts aimed at simulating single-walled carbon nanotube (SWNT) nucleation and growth processes using molecular dynamics (MD) techniques reported in the literature. MD simulations allow the spatio-temporal movement of atoms during nonequilibrium growth to be followed. Thus, it is hoped that a successful MD simulation of the entire SWNT formation process will assist in the design of chirality-specific SWNT synthesis techniques. We give special consideration to the role of the metal catalyst particles assumed in standard theories of SWNT formation, and describe the actual metal behavior observed in the reported MD simulations, including our own recent quantum chemical MD simulations. It is concluded that the use of a quantum potential is essential for a qualitatively correct description of the catalytic behavior of the metal cluster, and that carbide formation does not seem to be a necessary requirement for nucleation and growth of SWNTs according to our most recent quantum chemical MD simulations.


Carbon nanotubes transition metal catalysis molecular dynamics reactive force fields quantum chemistry 


  1. [1]
    Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.CrossRefADSGoogle Scholar
  2. [2]
    Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.CrossRefADSGoogle Scholar
  3. [3]
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.CrossRefADSGoogle Scholar
  4. [4]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grivorieva, L. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.Google Scholar
  6. [6]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: New York, 2001.Google Scholar
  7. [7]
    Baughman, R. A.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Palmer, D. J. Where nano is going. Nano Today 2008, 3, 46–47.CrossRefGoogle Scholar
  9. [9]
    Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; Lamy de la Chapelle, M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758.CrossRefADSGoogle Scholar
  10. [10]
    Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I. The role of metal nanoparticles in the catalytic production of singlewalled carbon nanotubes—A review. J. Phys. Cond. Matter 2003, 15, S3011–S3035.CrossRefADSGoogle Scholar
  11. [11]
    Harris, P. J. F. Solid state growth mechanisms for carbon nanotubes. Carbon 2007, 45, 229–239.CrossRefGoogle Scholar
  12. [12]
    Esconjauregui, S.; Whelan, C. M.; Maex, K. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669.CrossRefGoogle Scholar
  13. [13]
    Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642–2645.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Yudasaka, M.; Yamada, R.; Sensui, N.; Wilkins, T.; Ichihashi, T.; Iijima, S. Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J. Phys. Chem. B 1999, 103, 6224–6229.CrossRefGoogle Scholar
  16. [16]
    Kusunoki, M.; Suzuki, T.; Hirayama, M.; Shibata, N.; Kaneko, K. A formation mechanism of carbon nanotube films on SiC(0001). Appl. Phys. Lett. 2000, 77, 531–533.CrossRefADSGoogle Scholar
  17. [17]
    Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272–2275.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094–2095.CrossRefPubMedGoogle Scholar
  19. [19]
    Liu, B.; Ren, W.; Gao, L.; Li, S.; Pei, S.; Liu, C.; Jiang, C.; Cheng, H. M., Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.CrossRefPubMedGoogle Scholar
  20. [20]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  21. [21]
    Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97.CrossRefADSGoogle Scholar
  22. [22]
    Cheng, H. M.; Li, F.; Sun, X.; Brown, S. D. M.; Pimenta, M. A.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 1998, 289, 602–610.CrossRefADSGoogle Scholar
  23. [23]
    Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492.CrossRefGoogle Scholar
  24. [24]
    Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 2002, 360, 229–234.CrossRefADSGoogle Scholar
  25. [25]
    Reich, S.; Li, L.; Robertson, J. Structure and formation energy of carbon nanotube caps. Phys. Rev. B 2005, 72, 165423.CrossRefADSGoogle Scholar
  26. [26]
    Gomez-Gualdron, D. A.; Balbuena, P. B. The role of cap chirality in the mechanism of growth of single-wall carbon nanotubes. Nanotechnology 2008, 19, 485604.CrossRefGoogle Scholar
  27. [27]
    Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 2007, 7, 602–608.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Jiang, K. Super-aligned carbon nanotube arrays: Controlled synthesis, physical properties and applications. IUMRS International Conference in Asia (IUMRS-ICA), Nagoya, Japan, 2008.Google Scholar
  30. [30]
    Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 1990, 42, 9458–9471.CrossRefADSGoogle Scholar
  31. [31]
    Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. [Erratum to document cited in CA114(6):53045x]. Phys. Rev. B 1992, 46, 1948.CrossRefADSGoogle Scholar
  32. [32]
    Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Cond. Matter 2002, 14, 783–802.CrossRefADSGoogle Scholar
  33. [33]
    Car, R.; Parrinello, M. Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 1985, 55, 2471–2474.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Porezag, D.; Frauenheim, T.; Kohler, T.; Seifert, G.; Kaschner, R. Construction of tight-binding-like potentials on the basis of density-functional theory—Application to carbon. Phys. Rev. B 1995, 51, 12947–12957.CrossRefADSGoogle Scholar
  35. [35]
    Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.CrossRefADSGoogle Scholar
  36. [36]
    Dai, H.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 1996, 260, 471–475.CrossRefADSGoogle Scholar
  37. [37]
    Gavillet, J.; Loiseau, A.; Journet, C.; Willaime, F.; Ducastelle, F.; Charlier, J. -C. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 275504.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000.CrossRefADSGoogle Scholar
  39. [39]
    Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568.CrossRefADSGoogle Scholar
  40. [40]
    Marks, N. A.; Cooper, N. C.; McKenzie, D. R.; McCulloch, D. G.; Bath, P.; Russo, S. P. Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon. Phys. Rev. B 2002, 65, 075411.CrossRefADSGoogle Scholar
  41. [41]
    Zheng, G. S.; Irle, S.; Elstner, M.; Morokuma, K. Quantum chemical molecular dynamics model study of fullerene formation from open-ended carbon nanotubes. J. Phys. Chem. A 2004, 108, 3182–3194.CrossRefGoogle Scholar
  42. [42]
    Irle, S.; Zheng, G.; Wang, Z.; Morokuma, K. The C60 formation puzzle “solved“: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B 2006, 110, 14531–14545.CrossRefPubMedGoogle Scholar
  43. [43]
    Shibuta, Y.; Maruyama, S. Molecular dynamics simulation of generation process of SWNTs. Physica B 2002, 323, 187–189.CrossRefADSGoogle Scholar
  44. [44]
    Shibuta, Y.; Maruyama, S. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 2003, 382, 381–386.CrossRefADSGoogle Scholar
  45. [45]
    Shibuta, Y.; Maruyama, S. A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes. Chem. Phys. Lett. 2007, 437, 218–223.CrossRefADSGoogle Scholar
  46. [46]
    Ding, F.; Bolton, K.; Rosen, A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 2004, 108, 17369–17377.CrossRefGoogle Scholar
  47. [47]
    Ding, F.; Rosen, A.; Bolton, K. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 2004, 121, 2775–2779.CrossRefPubMedADSGoogle Scholar
  48. [48]
    Ding, F.; Bolton, K.; Rosen, A. Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth. J. Vac. Sci. Technol. A 2004, 22, 1471–1476.CrossRefADSGoogle Scholar
  49. [49]
    Ding, F.; Bolton, K.; Rosen, A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput. Mater. Sci. 2006, 35, 243–246.CrossRefGoogle Scholar
  50. [50]
    Ding, F.; Rosen, A.; Curtarolo, S.; Bolton, K. Modeling the melting of supported clusters. Appl. Phys. Lett. 2006, 88, 133110.CrossRefADSGoogle Scholar
  51. [51]
    Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosen, A.; Bolton, K. The importance of strong carbonmetal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468.CrossRefPubMedADSGoogle Scholar
  52. [52]
    Shibuta, Y.; Maruyama, S. Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube. Comput. Mater. Sci. 2007, 39, 842–848.CrossRefGoogle Scholar
  53. [53]
    Raty, J. Y.; Gygi, F.; Galli, G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phys. Rev. Lett. 2005, 95, 096103.CrossRefPubMedADSGoogle Scholar
  54. [54]
    Raty, J. Y.; Galli, G.; Bostedt, C.; van Buuren, T. W.; Terminello, L. J. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 2003, 90, 037401.CrossRefPubMedADSGoogle Scholar
  55. [55]
    Thiel, W.; Voityuk, A. A. Extension of the MNDO formalism to d orbitals: Integral approximations and preliminary numerical results. Theor. Chim. Acta 1996, 93, 315.Google Scholar
  56. [56]
    Stewart, J. J. P. MOPAC2009, Cache Software Group: 2009.Google Scholar
  57. [57]
    Zheng, G. S.; Witek, H. A.; Bobadova-Parvanova, P.; Irle, S.; Musaev, D. G.; Prabhakar, R.; Morokuma, K. Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method: Sc, Ti, Fe, Co, and Ni. J. Chem. Theory Comput. 2007, 3, 1349–1367.CrossRefGoogle Scholar
  58. [58]
    Weinert, M.; Davenport, J. W. Fractional occupations and density-functional energies and forces. Phys. Rev. B 1992, 45, 13709–13712.CrossRefADSGoogle Scholar
  59. [59]
    Ohta, Y.; Irle, S.; Okamoto, Y.; Morokuma, K. Rapid growth of a single-walled carbon nanotube on an iron cluster: Density-functional tight-binding molecular dynamics simulations. ACS Nano 2008, 2, 1437–1444.CrossRefPubMedGoogle Scholar
  60. [60]
    Wang, Y.; Kim, M. J.; Shan, H.; Kittrell, C.; Fan, H.; Ericson, L. M.; Hwang, W.-F.; Arepalli, S.; Hauge, R. H.; Smalley, R. E. Continued growth of single-walled carbon nanotubes. Nano Lett. 2005, 5, 997–1002.CrossRefPubMedADSGoogle Scholar
  61. [61]
    Smalley, R. E.; Li, Y. B.; Moore, V. C.; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829.CrossRefPubMedGoogle Scholar
  62. [62]
    Ohta, Y.; Okamoto, Y.; Irle, S.; Morokuma, K. Temperature dependence of iron-catalyzed continued single-walled carbon nanotube growth rates: Density functional tight-binding molecular dynamics simulations. J. Phys. Chem. C 2009, 113, 159–169.CrossRefGoogle Scholar
  63. [63]
    Ohta, Y.; Okamoto, Y.; Irle, S.; Morokuma, K. Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster. Carbon 2009, 47, 1270–1275.CrossRefGoogle Scholar
  64. [64]
    Larsson, P.; Larsson, J. A.; Ahuja, R.; Ding, F.; Yakobson, B. I.; Duan, H. M.; Rosen, A.; Bolton, K. Calculating carbon nanotube-catalyst adhesion strengths. Phys. Rev. B 2007, 75, 115419.CrossRefADSGoogle Scholar
  65. [65]
    Zhu, W.; Rosen, A.; Bolton, K. Changes in single-walled carbon nanotube chirality during growth and regrowth. J. Chem. Phys. 2008, 128, 124708.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Fukui Institute for Fundamental ChemistryKyoto UniversityKyotoJapan
  2. 2.Institute for Advanced Research and Department of ChemistryNagoya UniversityNagoyaJapan
  3. 3.Cherry L. Emerson Center for Scientific Computation and Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations