Nano Research

, 2:743 | Cite as

Self-organized growth of complex nanotube patterns on crystal surfaces

Open Access
Review Article

Abstract

The organization of carbon nanotubes into well-defined straight or curved geometries and arrays on surfaces is a critical prerequisite for their integration into nanocircuits and a variety of functional nanosystems. We review the recent development of a new approach to carbon nanotube organization based on self-organized growth directed by well-defined crystal surfaces, or “nanotube epitaxy”. We identify three different modes of surface-directed growth, namely by atomic rows, atomic steps, and nanofacets. Particular emphasis is given here to the combinations of such surface-directed growth with external forces—like those exerted by an electric field or gas flow—for the creation of well-defined complex geometries, including crossbar architectures, serpentines, and coils.

Keywords

Nanotubes self-organization surface science nanostructures nanofabrication self-assembly 

References

  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  2. [2]
    Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications, series: Top. Appl. Phys., vol 111. Springer, 2008.Google Scholar
  3. [3]
    Service, R. F. Assembling nanocircuits from the bottom up. Science 2001, 293, 782–785.CrossRefPubMedGoogle Scholar
  4. [4]
    Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T.; Smalley, R. E. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett. 1999, 303, 125–129.CrossRefADSGoogle Scholar
  5. [5]
    Diehl, M. R.; Yaliraki, S. N.; Beckman, R. A.; Barahona, M.; Heath, J. R. Self-assembled, deterministic carbon nanotube wiring networks. Angew. Chem. Int. Ed. 2002, 41, 353–356.CrossRefGoogle Scholar
  6. [6]
    Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Joselevich, E.; Lieber, C. M. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2002, 2, 1137–1141.CrossRefADSGoogle Scholar
  8. [8]
    Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 2003, 125, 5636–5637.CrossRefPubMedGoogle Scholar
  9. [9]
    Joselevich, E.; Dai, H. J.; Liu, J.; Hata, K.; Windle, A. H. Carbon nanotube synthesis and organization. Top. Appl. Phys. 2008, 111, 101–164.CrossRefGoogle Scholar
  10. [10]
    Hooks, D. E.; Fritz, T.; Ward, M. D. Epitaxy and molecular organization on solid substrates. Adv. Mater. 2001, 13, 227–241.CrossRefGoogle Scholar
  11. [11]
    Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.CrossRefPubMedGoogle Scholar
  12. [12]
    Smalley, R. E.; Li, Y. B.; Moore, V. C.; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824–15829.CrossRefPubMedGoogle Scholar
  13. [13]
    Wang, Y. H.; Kim, M. J.; Shan, H. W.; Kittrell, C.; Fan, H.; Ericson, L. M.; Hwang, W. F.; Arepalli, S.; Hauge, R. H.; Smalley, R. E. Continued growth of single-walled carbon nanotubes. Nano Lett. 2005, 5, 997–1002.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Kim, M. J.; Haroz, E.; Wang, Y.; Shan, H.; Nicholas, N.; Kittrell, C.; Moore, V. C.; Jung, Y.; Luzzi, D.; Wheeler, R.; BensonTolle, T.; Fan, H.; Da, S.; Hwang, W. F.; Wainerdi, T. J.; Schmidt, H.; Hauge, R. H.; Smalley, R. E. Nanoscopically flat open-ended single-walled carbon nanotube substrates for continued growth. Nano Lett. 2007, 7, 15–21.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Fullerene pipes. Science 1998, 280, 1253–1256.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Su, M.; Li, Y.; Maynor, B.; Buldum, A.; Lu, J. P.; Liu, J. Lattice-oriented growth of single-walled carbon nanotubes. J. Phys. Chem. B 2000, 104, 6505–6508.CrossRefGoogle Scholar
  17. [17]
    Tominaga, M.; Ohira, A.; Kubo, A.; Taniguchi, I.; Kunitake, M. Growth of carbon nanotubes on a gold (111) surface using two-dimensional iron oxide nanoparticle catalysts derived from iron storage protein. Chem. Commun. 2004, 1518–1519.Google Scholar
  18. [18]
    Derycke, V.; Martel, R.; Radosvljevic, M.; Ross, F. M. R.; Avouris, P. Catalyst-free growth of ordered single-walled carbon nanotube networks. Nano Lett. 2002, 2, 1043–1046.CrossRefADSGoogle Scholar
  19. [19]
    Ruppalt, L. B.; Albrecht, P. M.; Lyding, J. W. Atomic resolution scanning tunneling microscope study of single-wailed carbon nanotubes on GaAs(110). J. Vac. Sci. Technol. B 2004, 22, 2005–2007.CrossRefGoogle Scholar
  20. [20]
    Ruppalt, L. B.; Albrecht, P. M.; Lyding, J. W. UHV-STM study of single-walled carbon nanotubes applied to the GaAs(110) and InAs(110) surfaces. J. Phys. IV 2006, 132, 31–34.CrossRefGoogle Scholar
  21. [21]
    Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomicstep-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.CrossRefGoogle Scholar
  22. [22]
    Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.CrossRefPubMedGoogle Scholar
  23. [23]
    Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.CrossRefADSGoogle Scholar
  24. [24]
    Ago, H.; Uehara, N.; Ikeda, K.; Ohdo, R.; Nakamura, K.; Tsuji, M. Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 2006, 421, 399–403.CrossRefADSGoogle Scholar
  25. [25]
    Yu, Q. K.; Qin, G. T.; Li, H.; Xia, Z. H.; Nian, Y. B.; Pei, S. S. Mechanism of horizontally aligned growth of single-wall carbon nanotubes on r-plane sapphire. J. Phys. Chem. B 2006, 110, 22676–22680.CrossRefPubMedGoogle Scholar
  26. [26]
    Liu, X. L.; Han, S.; Zhou, C. W. Novel nanotube-oninsulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 2006, 6, 34–39.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Maret, M.; Hostache, K.; Schouler, M. C.; Marcus, B.; Roussel-Dherbey, F.; Albrecht, M.; Gadelle, P. Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 2007, 45, 180–187.CrossRefGoogle Scholar
  28. [28]
    Souza, M.; Jorio, A.; Fantini, C.; Neves, B. R. A.; Pimenta, M. A.; Saito, R.; Ismach, A.; Joselevich, E.; Brar, V. W.; Samsonidze, G. G.; Dresselhaus, G.; Dresselhaus, M. S. Single- and double-resonance Raman G-band processes in carbon nanotubes. Phys. Rev. B 2004, 69, 241403.CrossRefADSGoogle Scholar
  29. [29]
    Ismach, A.; Kantorovich, D.; Berson, J.; Geblinger, N.; Segev, L.; Wachtel, E.; Son, H.; Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G.; Joselevich, E. Epitaxial modes of carbon nanotube growth on vicinal α-Al2O3 (0001) surfaces. Unpublished.Google Scholar
  30. [30]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.CrossRefPubMedGoogle Scholar
  31. [31]
    Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.CrossRefPubMedGoogle Scholar
  32. [32]
    Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.CrossRefGoogle Scholar
  33. [33]
    Yuan, D.; Ding, L.; Chu, H. B.; Feng, Y. Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576–2579.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-wall carbon nanotubes. Nano Lett. 2009, 9, 800–805.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Smith, H. I.; Flanders, D. C. Oriented crystal-growth on amorphous substrates using artificial surface-relief gratings. Appl. Phys. Lett. 1978, 32, 349–350.CrossRefADSGoogle Scholar
  36. [36]
    Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 2001, 13, 1152–1155.CrossRefGoogle Scholar
  37. [37]
    Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Refael, G.; Heo, J. S; Bockrath, M. Sagnac interference in carbon nanotube loops. Phys. Rev. Lett. 2007, 98, 246803.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Ismach, A.; Joselevich, E. Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett. 2006, 6, 1706–1710.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Geblinger, N. MSc Thesis, Weizmann Institute of Science, Israel, 2008.Google Scholar
  41. [41]
    Gebliner, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol. 2008, 3, 195–200.CrossRefGoogle Scholar
  42. [42]
    Wang, Y. H.; Maspoch, D.; Zou, S. L.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2026–2031.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Tsukruk, V. V.; Ko, H.; Peleshanko, S. Nanotube surface arrays: Weaving, bending, and assembling on patterned silicon. Phys. Rev. Lett. 2004, 92, 065502.CrossRefPubMedADSGoogle Scholar
  44. [44]
    Duggal, R.; Pasquali, M. Dynamics of individual singlewalled carbon nanotubes in water by real-time visualization. Phys. Rev. Lett. 2006, 96, 246104.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Hertel, T.; Walkup, R. E.; Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870–13873.CrossRefADSGoogle Scholar
  46. [46]
    Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.CrossRefPubMedADSGoogle Scholar
  48. [48]
    Nicolis, G.; Prigogine, I. Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations; John Wiley: New York, 1977.Google Scholar
  49. [49]
    Kurin-Csorgei, K.; Epstein, I. R.; Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 2005, 433, 139–142.CrossRefPubMedADSGoogle Scholar
  50. [50]
    Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L.; Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082–6085.CrossRefPubMedADSGoogle Scholar
  51. [51]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefPubMedADSGoogle Scholar
  52. [52]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. Highperformance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefPubMedADSGoogle Scholar
  53. [53]
    Wang, Y.; Kempa, K.; Kimball, B.; Carlson, J. B.; Benham, G.; Li, W. Z.; Kempa, T.; Rybczynski, J.; Herczynski, A.; Ren, Z. F. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 2004, 85, 2607–2609.CrossRefADSGoogle Scholar
  54. [54]
    Springel, V.; Frenk, C. S.; White, S. D. M. The large-scale structure of the universe. Nature 2006, 440, 1137–1144.CrossRefPubMedADSGoogle Scholar
  55. [55]
    Werner, B. T.; Complexity in natural landform patterns. Science 1999, 284, 102–104.CrossRefPubMedADSGoogle Scholar
  56. [56]
    Vollbrecht, E.; Springer, P. S.; Goh, L.; Buckler, E. S.; Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 2005, 436, 1119–1126.CrossRefPubMedADSGoogle Scholar
  57. [57]
    Lumelsky, N.; Blondel, O.; Laeng, P.; Velasco, I.; Ravin, R.; McKay, R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001, 292, 1389–1394.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations