Nano Research

, Volume 2, Issue 9, pp 713–721 | Cite as

Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries

  • Chunsheng Li
  • Fangyi Cheng
  • Weiqiang Ji
  • Zhanliang Tao
  • Jun Chen
Open Access
Research Article

Abstract

In this paper, we report on the morphology-controlled synthesis of magnesium micro/nanospheres and their electrochemical performance as the anode of primary Mg/MnO2 batteries. Mg micro/nanoscale materials with controllable shapes have been prepared via a conventional vapor-transport method under an inert atmosphere by adjusting the deposition temperatures. Extensive analysis techniques including SEM, XRD, TEM/HRTEM, and Brunauer-Emmett-Teller (BET) were carried out to characterize the as-obtained samples. The results show that the Mg samples are microspheres or micro/nanospheres with specific surface areas of 0.61–1.92 m2/g. The electrochemical properties of the as-prepared Mg and commercial Mg powders were further studied in terms of their linear sweep voltammograms, impedance spectra, and discharge capability. By comparing the performance of different inhibitors in electrolytes, it was found that NaNO2 (2.6 mol/L) as an inhibitor in the Mg(NO3)2 (2.6 mol/L) electrolyte affords a Mg electrode with high current density and low corrosion rate. In particular, the Mg sample consisting of microspheres with a diameter of 1.5–3.0 μm and nanospheres with a diameter of 50–150 nm exhibited superior electrode properties including negative initial potential (−1.08 V), high current density (163 mA/cm2), low apparent activation energy (5.1 kJ/mol), and high discharge specific capacity (784 mAh/g). The mixture of Mg nanospheres and microspheres is promising for application in primary Mg/MnO2 batteries because of the sufficient contact with the electrolyte and greatly reduced charge transfer impedance and polarization.

Keywords

Magnesium micro/nanospheres vapor-transport method primary Mg/MnO2 batteries 

Supplementary material

12274_2009_9075_MOESM1_ESM.pdf (420 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Novák, P.; Imhof, R.; Haas, O. Magnesium insertion electrodes for rechargeable nonaqueous batteries — A competitive alternative to lithium? Electrochim. Acta 1999, 45, 351–367.CrossRefGoogle Scholar
  2. [2]
    Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Peng, B.; Liang, J.; Tao, Z. L.; Chen, J. Magnesium nanostructures for energy storage and conversion. J. Mater. Chem. 2009, 19, 2877–2883.CrossRefGoogle Scholar
  4. [4]
    Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269.PubMedCrossRefGoogle Scholar
  5. [5]
    Li, W. Y.; Li, C. S.; Zhou, C. Y.; Ma, H.; Chen, J. Metallic magnesium nano/mesoscale structures: Their shapecontrolled preparation and Mg/air battery applications. Angew. Chem., Int. Ed. 2006, 45, 6009–6012.CrossRefGoogle Scholar
  6. [6]
    Kumar, G. G.; Munichandraiah, N. Ageing of magnesium/manganese dioxide primary cells. J. Solid State Electrochem. 2001, 5, 8–16.CrossRefGoogle Scholar
  7. [7]
    Munichandraiah, N. Electrochemical impedance studies of a decade-aged magnesium/manganese dioxide primary cell. J. Appl. Electrochem. 1999, 29, 463–471.CrossRefGoogle Scholar
  8. [8]
    Renuka, R.; Ramamurthy, S. An investigation on layered birnessite type manganese oxides for battery applications. J. Power Sources 2000, 87, 144–152.CrossRefGoogle Scholar
  9. [9]
    Vuorilehto, K. An environmentally friendly water-activated manganese dioxide battery. J. Appl. Electrochem. 2003, 33, 15–21.CrossRefGoogle Scholar
  10. [10]
    Sathyanarayana, S.; Munichandraiah, N. A new magnesium-air cell for long-life applications. J. Appl. Electrochem. 1981, 11, 33–39.CrossRefGoogle Scholar
  11. [11]
    Cheng, F. Y.; Zhao, J. Z.; Song, W. E.; Li, C. S.; Ma, H.; Chen, J.; Shen, P. W. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45, 2038–2044.PubMedCrossRefGoogle Scholar
  12. [12]
    Cheng, F. Y.; Chen, J.; Gou, X. L.; Shen, P. W. High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 2005, 17, 2753–2756.CrossRefGoogle Scholar
  13. [13]
    Tao, Z. L.; Li, C. S.; Chen, J. Mg micro/nanoscale materials with sphere-like morphologies: Size-controlled synthesis and characterization. Sci. China Ser. G-Phys. Mech. Astron. 2009, 52, 35–39.CrossRefADSGoogle Scholar
  14. [14]
    Li, W. N.; Yuan, J. K.; Shen, X. F.; Gomez-Mower, S.; Xu, L. P.; Sithambaram, S.; Aindow, M.; Suib, S. L. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater. 2006, 16, 1247–1253.CrossRefGoogle Scholar
  15. [15]
    Izumi, F.; Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 2000, 321–324, 198–203.CrossRefGoogle Scholar
  16. [16]
    Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Surface modifications of electrode materials for lithium ion batteries. Solid State Sci. 2006, 8, 113–128.CrossRefADSGoogle Scholar
  17. [17]
    Lee, J.; Yang, H. J.; Lee, J.; Shin, H.; Kim, J.; Jeong, C.; Cho, B.; Chung, K.; Lee, E. Adhesion, passivation, and resistivity of a Ag(Mg) gate electrode for an amorphous silicon thin-film transistor. J. Mater. Res. 2003, 18, 1441–1446.CrossRefADSGoogle Scholar
  18. [18]
    Ricci, D.; Pacchioni, G.; Sushko, P. V.; Shluger, A. L. Reactivity of (H+)(e) color centers at the MgO surface: Formation of O2 and N2 radical anions. Surf. Sci. 2003, 542, 293–306.CrossRefADSGoogle Scholar
  19. [19]
    Khaleel, A.; Kapoor, P. N.; Klabunde, K. J. Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct. Mater. 1999, 11, 459–468.CrossRefGoogle Scholar
  20. [20]
    Jarvis, L. The beneficial effect of increased cathode water content on magnesium battery performance. In Proceedings of the 34 th international power sources symposium, Cherry Hill, New Jersey, June 25 28, 1990; Institute of Electrical and Electronics Engineers, New York, 1990; pp. 107–109.Google Scholar
  21. [21]
    Li, C. S.; Zhang, S. Y.; Cheng, F. Y.; Ji, W. Q.; Chen, J. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Res. 2008, 1, 242–248.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Chunsheng Li
    • 1
  • Fangyi Cheng
    • 1
  • Weiqiang Ji
    • 1
  • Zhanliang Tao
    • 1
  • Jun Chen
    • 1
  1. 1.Institute of New Energy Material Chemistry and Engineering Research Center of Energy Storage and Conversion (Ministry of Education)Nankai UniversityTianjinChina

Personalised recommendations