Nano Research

, Volume 2, Issue 9, pp 695–705 | Cite as

Shedding light on the crystallographic etching of multi-layer graphene at the atomic scale

  • Franziska Schäffel
  • Jamie H. Warner
  • Alicja Bachmatiuk
  • Bernd Rellinghaus
  • Bernd Büchner
  • Ludwig Schultz
  • Mark H. Rümmeli
Open Access
Research Article

Abstract

The controlled etching of graphite and graphene by catalytic hydrogenation is potentially a key engineering route for the fabrication of graphene nanoribbons with atomic precision. The hydrogenation mechanism, though, remains poorly understood. In this study we exploit the benefits of aberration-corrected high-resolution transmission electron microscopy to gain insight to the hydrogenation reaction. The etch tracks are found to be commensurate with the graphite lattice. Catalyst particles at the head of an etch channel are shown to be faceted and the angles between facets are multiples of 30°. Thus, the angles between facets are also commensurate with the graphite lattice. In addition, the results of a post-annealing step suggest that all catalyst particles—even if they are not involved in etching—are actively forming methane during the hydrogenation reaction. Furthermore, the data point against carbon dissolution being a key mechanism during the hydrogenation process.

Keywords

Graphene graphene nanoribbons catalytic hydrogenation nanoparticles 

Supplementary material

12274_2009_9073_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.Google Scholar
  4. [4]
    Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.Google Scholar
  6. [6]
    Brey, L; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.Google Scholar
  7. [7]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy bandgap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.Google Scholar
  8. [8]
    Chen, Z.; Lin, Y. -M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.CrossRefADSGoogle Scholar
  9. [9]
    Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.Google Scholar
  11. [11]
    Wang, W. L.; Meng, S.; Kaxiras, E. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 241–245.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Kobayashi, Y.; Fukui, K. -I.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.Google Scholar
  13. [13]
    Zhao, P.; Choudhury, M.; Mohanram, K.; Guo, J. Computational model of edge effects in graphene nanoribbon transistors. Nano Res. 2008, 1, 395–402.CrossRefGoogle Scholar
  14. [14]
    Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.PubMedCrossRefGoogle Scholar
  15. [15]
    Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361–394.CrossRefGoogle Scholar
  16. [16]
    Schniepp, H. C.; Li, J. -L.; McAllister, M. J.; Saki, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.PubMedCrossRefGoogle Scholar
  17. [17]
    Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 2007, 111, 7565–7569.CrossRefGoogle Scholar
  18. [18]
    Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.PubMedCrossRefADSGoogle Scholar
  19. [19]
    Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  20. [20]
    Tomita, A.; Tamai, Y. An optical microscopic study on the catalytic hydrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.CrossRefGoogle Scholar
  21. [21]
    Konishi, S.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Catalytic creation of channels in the surface layers of highly oriented pyrolytic graphite by cobalt nanoparticles. Carbon 2006, 44, 2338–2340.CrossRefGoogle Scholar
  22. [22]
    Harris, P. S.; Feates, F. S.; Reuben, B. G. Controlled atmosphere electron microscopy studies of graphite gasification — 4. Catalysis of the graphite-O2 reaction by silver. Carbon 1974, 12, 189–197.CrossRefGoogle Scholar
  23. [23]
    Yang, R. T.; Wong, C. Catalysis of carbon oxidation by transition metal carbides and oxides. J. Catal. 1984, 85, 154–168.CrossRefGoogle Scholar
  24. [24]
    Goethel, P. J.; Yang, R. T. Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J. Catal. 1989, 119, 201–214.CrossRefGoogle Scholar
  25. [25]
    Pan, Z. J.; Yang, R. T. Catalytic behavior of transition metal oxide in graphite gasification by oxygen, water and carbon dioxide. J. Catal. 1991, 130, 161–172.CrossRefGoogle Scholar
  26. [26]
    Chen, S. G.; Yang, R. T. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy. J. Catal. 1992, 138, 12–23.CrossRefGoogle Scholar
  27. [27]
    Huang, H. Y.; Yang, R. T. Catalyzed carbon-NO reaction studied by scanning tunneling microscopy and ab initio molecular orbital calculations. J. Catal. 1999, 185, 286–296.CrossRefGoogle Scholar
  28. [28]
    Tomita, A; Tamai, Y. Hydrogenation of carbons catalyzed by transition metals. J. Catal. 1972, 27, 293–300.CrossRefGoogle Scholar
  29. [29]
    Rewick, R. T.; Wentrcek, P. R.; Wise, H. Carbon gasification in the presence of metal catalysts. Fuel 1974, 53, 274–279.CrossRefGoogle Scholar
  30. [30]
    Keep, C. W.; Terry, S.; Wells, M. Studies of the nickel catalyzed hydrogenation of graphite. J. Catal. 1980, 66, 451–462.CrossRefGoogle Scholar
  31. [31]
    Goethel, P. J.; Yang, R. T. Platinum-catalyzed hydrogenation of graphite: Mechanism studied by the rates of monolayer channelling. J. Catal. 1986, 101, 341–351.CrossRefGoogle Scholar
  32. [32]
    Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by nickel. J. Catal. 1987, 108, 356–363.CrossRefGoogle Scholar
  33. [33]
    Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by ruthenium particles. J. Catal. 1988, 111, 220–226.CrossRefGoogle Scholar
  34. [34]
    Schäffel, F.; Kramberger, C.; Rümmeli, M. H.; Kaltofen, R.; Grimm, D.; Grüneis, A.; Mohn, E.; Gemming, T.; Pichler, T.; Büchner, B.; Rellinghaus, B.; Schultz, L. Carbon nanotubes grown from individual gas phase prepared iron catalyst particles. Phys. Stat. Sol. A 2007, 204, 1786–1790.CrossRefGoogle Scholar
  35. [35]
    Schäffel, F.; Kramberger, C.; Rümmeli, M. H.; Grimm, D.; Mohn, E.; Gemming, T. Pichler, T.; Rellinghaus, B.; Büchner, B.; Schultz, L. Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem. Mater. 2007, 19, 5006–5009.CrossRefGoogle Scholar
  36. [36]
    Takasu, Y.; Konishi, S.; Miyoshi, R.; Nukii, K.; Matsuse, T.; Sugimoto, W.; Murakami, Y. Catalytic linear grooving of graphite surface layers by Pt, Ru, and PtRu nanoparticles. Chem. Lett. 2005, 34, 1008–1009.CrossRefGoogle Scholar
  37. [37]
    Baker, R. T. K.; Harris, P. S.; Thomas, R. B. Direct observation of particle mobility on a surface in a gaseous environment. Surf. Sci. 1974, 46, 311–316.CrossRefADSGoogle Scholar
  38. [38]
    Baker, R. T. K. In situ electron microscopy studies of catalyst particle behavior. Catal. Rev.- Sci. Eng. 1979, 19, 161–209.CrossRefGoogle Scholar
  39. [39]
    Chang, H.; Brad, A. J. Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite. J. Am. Chem. Soc. 1991, 113, 5588–5596.CrossRefGoogle Scholar
  40. [40]
    Severin, N.; Kirstein, S.; Sokolov, I. M.; Rabe, J. P. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009, 9, 457–461.PubMedCrossRefADSGoogle Scholar
  41. [41]
    Hennig, G. R. Catalytic oxidation of graphite. J. Inorg. Nucl. Chem. 1962, 24, 1129–1132.CrossRefGoogle Scholar
  42. [42]
    Delzeit, L.; Nguyen, C. V.; Chen, B.; Stevens, R.; Cassell, A.; Han, J.; Meyyappan, M. Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 2002, 106, 5629–5635.CrossRefGoogle Scholar
  43. [43]
    Cortie, M. B.; van der Lingen, E. Catalytic gold nanoparticles. Mater. Forum 2002, 26, 1–14.Google Scholar
  44. [44]
    Rümmeli, M. H.; Schäffel, F.; Kramberger, C.; Gemming, T. Bachmatiuk, A.; Kalenczuk, R. J.; Rellinghaus, B.; Büchner, B.; Pichler, T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J. Am. Chem. Soc. 2007, 129, 15772–15773.PubMedCrossRefGoogle Scholar
  45. [45]
    Warner, J. H.; Schäffel, F.; Zhong, G.; Rümmeli, M. H.; Büchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter dependent stability of single-walled carbon nanotubes. ACS Nano 2009, 3, 1557–1563.PubMedCrossRefGoogle Scholar
  46. [46]
    Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.PubMedCrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Franziska Schäffel
    • 1
  • Jamie H. Warner
    • 2
  • Alicja Bachmatiuk
    • 1
  • Bernd Rellinghaus
    • 1
  • Bernd Büchner
    • 1
  • Ludwig Schultz
    • 1
  • Mark H. Rümmeli
    • 1
  1. 1.IFW DresdenDresdenGermany
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations