Nano Research

, Volume 2, Issue 9, pp 671–677 | Cite as

Magnetoresistance oscillations of ultrathin Pb bridges

  • Jian Wang
  • Xucun Ma
  • Shuaihua Ji
  • Yun Qi
  • Yingshuang Fu
  • Aizi Jin
  • Li Lu
  • Changzhi Gu
  • X. C. Xie
  • Mingliang Tian
  • Jinfeng Jia
  • Qikun Xue
Open Access
Research Article

Abstract

Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb films using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques. We observed novel magnetoresistance oscillations below the superconducting transition temperature (TC) of the bridges. The oscillations—which were not seen in the crystalline Pb films—may originate from the inhomogeneity of superconductivity induced by the applied magnetic fields on approaching the normal state, or the degradation of film quality by thermal evolution.

Keywords

Pb nanobridge magnetoresistance superconductivity molecular beam epitaxy scanning tunneling microscope focus ion beam 

References

  1. [1]
    Sharifi, F.; Herzog, A. V.; Dynes, R. C. Crossover from two to one dimension in in situ grown wires of Pb. Phys. Rev. Lett. 1993, 71, 428–431.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Herzog, A. V.; Xiong, P.; Sharifi, F.; Dynes, R. C. Observation of a discontinuous transition from strong to weak localization in 1-D granular metal wires. Phys. Rev. Lett. 1996, 76, 668–671.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Xiong, P.; Herzog, A. V.; Dynes, R. C. Negative magnetoresistance in homogeneous amorphous superconducting Pb wires. Phys. Rev. Lett. 1997, 78, 927–930.CrossRefADSGoogle Scholar
  4. [4]
    Bezryadin, A.; Lau, C. N.; Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 2000, 404, 971–974.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Camarota, B.; Parage, F.; Delsing, P.; Buisson, O. Experimental evidence of one-dimensional plasma modes in superconducting thin wires. Phys. Rev. Lett. 2001, 86, 480–483.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Vodolazov, D. Y.; Peeters, F. M.; Piraux, L.; Mátéfi-Tempfli, S.; Michotte, S. Current-voltage characteristics of quasi-one-dimensional superconductors: An S-shaped curve in the constant voltage regime. Phys. Rev. Lett. 2003, 91, 157001.Google Scholar
  7. [7]
    Tian, M. L.; Kumar, N.; Xu, S. Y.; Wang, J. G.; Kurtz, J. S.; Chan, M. H. W. Suppression of superconductivity in zinc nanowires by bulk superconductors. Phys. Rev. Lett. 2005, 95, 076802.Google Scholar
  8. [8]
    Rogachev, A.; Bollinger, A. T.; Bezryadin, A. Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 2005, 94, 017004.Google Scholar
  9. [9]
    Zgirski, M; Riikonen, K. -P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 2005, 5, 1029–1033.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Altomare, F; Chang, A. M.; Melloch, M. R.; Hong, Y. G.; Tu, C. W. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 2006, 97, 017001.Google Scholar
  11. [11]
    Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q.; Jia, J. F.; Zhao, Z. X.; Xue, Q. K. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Chiang, T. C. Superconductivity in thin films. Science 2004, 306, 1900–1901.PubMedCrossRefGoogle Scholar
  13. [13]
    Zhang, Y. F.; Jia, J. F.; Han, T. Z.; Tang, Z.; Shen, Q. T.; Guo, Y.; Qiu, Z. Q.; Xue, Q. K. Band structure and oscillatory electron-phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 2005, 95, 096802.Google Scholar
  14. [14]
    Bao, X. Y.; Zhang, Y. F.; Wang, Y. P.; Jia, J. F.; Xue, Q. K.; Xie, X. C.; Zhao, Z. X. Quantum size effects on the perpendicular upper critical field in ultrathin lead films. Phys. Rev. Lett. 2005, 95, 247005.Google Scholar
  15. [15]
    Eom, D.; Qin, S.; Chou, M. -Y.; Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 2006, 96, 027005.Google Scholar
  16. [16]
    Ozer, M. M.; Thompson, J. R.; Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2006, 2, 173–176.CrossRefGoogle Scholar
  17. [17]
    Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Jia, J. F.; Xue, Q. K. Negative magnetoresistance in fractal Pb thin films on Si(111). Appl. Phys. Lett. 2007, 90, 113109.Google Scholar
  18. [18]
    Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Unusual magnetoresistance effect in the heterojunction structure of an ultrathin single-crystal Pb film on silicon substrate. Nanotechnology 2008, 19, 475708.CrossRefADSGoogle Scholar
  19. [19]
    Rogachev, A.; Bezryadin, A. Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl. Phys. Lett. 2003, 83, 512–514.CrossRefADSGoogle Scholar
  20. [20]
    Tian, M. L.; Wang, J. G.; Kurtz, J. S.; Liu, Y.; Chan, M. H. W. Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 2005, 71, 104521.Google Scholar
  21. [21]
    Shanenko, A. A.; Croitoru, M. D.; Zgirski, M.; Peeters, F. M.; Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect. Phys. Rev. B 2006, 74, 052502.Google Scholar
  22. [22]
    Wang, J.; Ma, X. C.; Lu, L.; Jin, A. Z.; Gu, C. Z.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts. Appl. Phys. Lett. 2008, 92, 233119.Google Scholar
  23. [23]
    Herzog, A. V.; Xiong, P.; Dynes, R. C. Magnetoresistance oscillations in granular Sn wires near the superconductor- insulator transition. Phys. Rev. B 1998, 58, 14199–14202.CrossRefADSGoogle Scholar
  24. [24]
    Johansson, A.; Sambandamurthy, G.; Shahar, D.; Jacobson, N.; Tenne, R. Nanowires acting as a superconducting quantum interference device. Phys. Rev. Lett. 2005, 95, 116805.Google Scholar
  25. [25]
    Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K. Synthesis and superconducting properties of niobium nanowires and nanoribbons. Appl. Phys. Lett. 2007, 91, 162508.Google Scholar
  26. [26]
    Van der Zant, H. S. J., Webster, M. N., Romijn, J.; Mooij, J. E. Vortices in two-dimensional superconducting weakly coupled wire networks. Phys. Rev. B 1994, 50, 340–350.CrossRefADSGoogle Scholar
  27. [27]
    Hopkins, D. S.; Pekker, D.; Goldbart, P. M., Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 2005, 308, 1762–1765.PubMedCrossRefADSGoogle Scholar
  28. [28]
    Pekker, D.; Bezryadin, A.; Hopkins, D. S.; Goldbart, P. M. Operation of a superconducting nanowire quantum interference device with mesoscopic leads. Phys. Rev. B 2005, 72, 104517.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Jian Wang
    • 1
    • 2
  • Xucun Ma
    • 1
  • Shuaihua Ji
    • 1
  • Yun Qi
    • 1
  • Yingshuang Fu
    • 1
  • Aizi Jin
    • 1
  • Li Lu
    • 1
  • Changzhi Gu
    • 1
  • X. C. Xie
    • 1
    • 3
  • Mingliang Tian
    • 2
  • Jinfeng Jia
    • 1
    • 4
  • Qikun Xue
    • 1
    • 4
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.The Center for Nanoscale Science and Department of PhysicsThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of PhysicsOklahoma State UniversityStillwaterUSA
  4. 4.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations