Nano Research

, Volume 2, Issue 8, pp 648–659 | Cite as

Silicon-based molecular switch junctions

Open Access
Research Article

Abstract

In contrast to the static operations of conventional semiconductor devices, the dynamic conformational freedom in molecular devices opens up the possibility of using individual molecules as new types of devices such as a molecular conformational switch or for molecular data storage. Bistable molecules—such as those having two stable cis and trans isomeric configurations—could provide, once clamped between two electrodes, a switching phenomenon in the non-equilibrium current response. Here, we model molecular switch junctions formed at silicon contacts and demonstrate the potential of such tunable molecular switches in electrode/molecule/electrode configurations. Using the non-equilibrium Green function (NEGF) approach implemented with the density-functional-based tight-binding (DFTB) theory, a series of properties such as electron transmissions, current-voltage characteristics in the different isomer conformations, and potential energy surfaces (PESs) as a function of the reaction coordinates along the trans to cis transition were calculated for two azobenzene-based model compounds. Furthermore, in order to investigate the stability of molecular switches under ambient conditions, molecular dynamics (MD) simulations at room temperature were performed and time-dependent fluctuations of the conductance along the MD pathways were calculated. Our numerical results show that the transmission spectra of the cis isomers are more conductive than trans counterparts inside the bias window for both model compounds. The current voltage characteristics consequently show the same trends. Additionally, calculations of the time-dependent transmission fluctuations along the MD pathways have shown that the transmission in the cis isomers is always significantly larger than that in their trans counterparts, showing that molecular switches can be expected to work as robust molecular switching components.

Keywords

Molecular electronics molecular switches charge transport silicon-molecule interface 

Supplementary material

12274_2009_9067_MOESM1_ESM.pdf (923 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999, 286, 1550–1552.PubMedCrossRefGoogle Scholar
  2. [2]
    Cuniberti, G.; Fagas, G.; Richter, K. Introducing Molecular Electronics; Springer-Verlag Berlin, Heidelberg, 2005.CrossRefGoogle Scholar
  3. [3]
    Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277.CrossRefADSGoogle Scholar
  4. [4]
    Fernández-Torrente, I.; Franke, K. J.; Pascual, J. I. Vibrational Kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 2008, 101, 217203.Google Scholar
  5. [5]
    Schulze, G.; Franke, K. J.; Gagliardi, A.; Romano, G.; Lin, C. S.; Rosa, A. L.; Niehaus, T. A.; Frauenheim, T.; Di Carlo, A.; Pecchia, A.; Pascual, J. I. Resonant electron heating and molecular phonon cooling in single C-60 junctions. Phys. Rev. Lett. 2008, 100, 136801.Google Scholar
  6. [6]
    Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022.PubMedCrossRefADSGoogle Scholar
  8. [8]
    Feringa, B. L. Molecular Switches; Wiley-VCH: Weinheim, 2001.CrossRefGoogle Scholar
  9. [9]
    Zhang, C.; Du, M. -H.; Cheng, H. -P.; Zhang, X. -G.; Roitberg, A. E.; Krause, J. L. Coherent electron transport through an azobenzene molecule: A light-driven molecular switch. Phys. Rev. Lett. 2004, 92, 158301/1–4.ADSGoogle Scholar
  10. [10]
    Zhang, C.; He, Y.; Cheng, H. -P.; Xue, Y.; Ratner, M. A.; Zhang, X. -G.; Krstic, P. Current voltage characteristics through a single light-sensitive molecule. Phys. Rev. B 2006, 73, 125445.Google Scholar
  11. [11]
    del Valle, M.; Gutierrez, R.; Tejedor, C.; Cuniberti, G. Tuning the conductance of a molecular switch. Nat. Nanotechnol. 2007, 2, 176–179.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Staykov, A.; Nozaki, D.; Yoshizawa, K. Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J. Phys. Chem. C 2007, 111, 3517–3521.CrossRefGoogle Scholar
  13. [13]
    Dulic, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J. J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. One-way optoelectronic switching of photochromic molecules on gold. J. Phys. Rev. Lett. 2003, 91, 207402/1–4.CrossRefADSGoogle Scholar
  14. [14]
    Lörtscher, E.; Ciszek, J. W.; Tour, J.; Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2006, 2, 973–977.PubMedCrossRefGoogle Scholar
  15. [15]
    Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. -H.; Morgenstern, K. Reversible cis trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 2006, 45, 603–606.CrossRefGoogle Scholar
  16. [16]
    Henzl, J.; Mehlhorn, M.; Morgenstern, K. Aminonitro-azobenzene dimers as a prototype for a molecular-level machine. Nanotechnology 2007, 18, 495502-1–6.CrossRefGoogle Scholar
  17. [17]
    Choi, B. -Y.; Kahng, S. -J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy study. Phys. Rev. Lett. 2006, 96, 156106.Google Scholar
  18. [18]
    Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. -H.; Moresco, F.; Grill, L. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 2006, 128, 14446–14447.PubMedCrossRefGoogle Scholar
  19. [19]
    Alemani, M.; Selvanathan, S.; Ample, F.; Peters, M. V.; Rieder, K. -H.; Moresco, F.; Joachim, C.; Hecht, S.; Grill, L. Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces: Au(111), Cu(111), and Au(100). J. Phys. Chem. C 2008, 112, 10509–10514.CrossRefGoogle Scholar
  20. [20]
    Dri, C.; Peters, M. V.; Schwarz, J.; Hecht, S.; Grill, L. Spatial periodicity in molecular switching. Nat. Nanotechnol. 2008, 3, 649–653.PubMedCrossRefADSGoogle Scholar
  21. [21]
    Frauenheim, T.; Seifert, G.; Elstner, M.; Hajnal, Z.; Jungnickel, G.; Porezag, G.; Suhai, S.; Scholz, R. A selfconsistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi B 2000, 217, 41–62.CrossRefADSGoogle Scholar
  22. [22]
    Elstner, M.; Porezag, G.; Jonkman, H. T.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.CrossRefADSGoogle Scholar
  23. [23]
    Haugk, M.; Elsner, J.; Frauenheim, T. A density-functional based tight-binding approach to GaAs surface reconstructions. J. Phys.: Cond. Matt. 1997, 9, 7305–7315.CrossRefADSGoogle Scholar
  24. [24]
    Szucs, B.; Hajnal, Z.; Frauenheim, T.; González, C.; Ortega, J.; Pérez, R.; Flores, F. Chalcogen passivation of GaAs(100) surfaces: Theoretical study. Appl. Surf. Sci. 2003, 212, 861–865.CrossRefADSGoogle Scholar
  25. [25]
    Szucs, B.; Hajnal, Z.; Scholz, R.; Sanna, S.; Frauenheim, T. Theoretical study of the adsorption of a PTCDA monolayer on S-passivated GaAs(100). Appl. Surf. Sci. 2004, 234, 173–177.CrossRefADSGoogle Scholar
  26. [26]
    Krüger, T.; Elstner, M.; Schiffels, P.; Frauenheim, T. Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J. Chem. Phys. 2005, 122, 114110.Google Scholar
  27. [27]
    Niehaus, T. A.; Elstner, M.; Frauenheim, T.; Suhai, S. Application of an approximate density-functional method to sulfur containing compounds. J. Mol. Struct. (THEOCHEM) 2001, 541, 185–194.CrossRefGoogle Scholar
  28. [28]
    Elstner, M.; Frauenheim, T.; Kaxiras, E.; Seifert, G.; Suhai, S. A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B 2000, 217, 357–376.CrossRefGoogle Scholar
  29. [29]
    Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. J. Chem. Phys. 2001, 114, 5149–5155.CrossRefADSGoogle Scholar
  30. [30]
    Elstner, M.; Jalkanen, K. J.; Knapp-Mohammady, M.; Frauenheim, T.; Suhai, S. Energetics and structure of glycine and alanine based model peptides: Approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem. Phys. 2001, 263, 203–219.CrossRefGoogle Scholar
  31. [31]
    Di Carlo, A.; Pecchia, A.; Latessa, L.; Frauenheim, T.; Seifert, G. Lect. Notes Phys. 2005, 680, 153.CrossRefADSGoogle Scholar
  32. [32]
    Pecchia, A.; Di Carlo, A. Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 2004, 67, 1497–1561.CrossRefADSGoogle Scholar
  33. [33]
    Fisher, D. S.; Lee, P. A. Relation between conductivity and transmission matrix. Phys. Rev. B 1981, 23, 6851–6854.CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    Brown, E. V.; Grunneman, G. R. J. Am. Chem. Soc. 1975, 97, 621.CrossRefGoogle Scholar
  35. [35]
    Sauer, P.; Allen, R. E. Multiple steps and multiple excitations in photoisomerization of azobenzene. Chem. Phys. Lett. 2008, 450, 192 195.CrossRefGoogle Scholar
  36. [36]
    Füchsel, G.; Klamroth, T.; Dokic, J.; Saalfrank, P. On the electronic structure of neutral and ionic azobenzenes and their possible role as surface mounted molecular switches. J. Phys. Chem. B 2006, 110, 16337–16345.PubMedCrossRefGoogle Scholar
  37. [37]
    Murata, H.; Itabashi, A.; Arai, T.; Tomitori, M. In Electronic Structure and Processes of Molecular-Based Interfaces: In Relation to Organic and Molecular Devices (ESPMI-06), Nagoya, Japan, 2006, p. 55.Google Scholar
  38. [38]
    Murata, H.; Itabashi, A. In MRS Fall Meeting, Boston, USA, 2004.Google Scholar
  39. [39]
    Itabashi, A.; Arai, T.; Tomitori, M.; Murata, H. In The Third International Conference on Molecular Electronics and Bioelectronics (M&BE3), Tokyo, Japan, 2005.Google Scholar
  40. [40]
    Eberl, K.; Schmidt, O. G. Nanotechnology—Thin solid films roll up into nanotubes. Nature 2001, 410, 168–168.PubMedCrossRefADSGoogle Scholar
  41. [41]
    Deneke, C.; Schumann, J.; Engelhard, R.; Thomas, J.; Sigle, W.; Zschieschang, U.; Klauk, H.; Chuvilin, A.; Schmidt, O. G. Fabrication of radial superlattices based on different hybrid materials. Phys. Status Solidi C 2008, 5, 2704–2708.CrossRefGoogle Scholar
  42. [42]
    Fagas, G.; Cuniberti, G.; Richter, K. Electron transport in nanotube-molecular-wire hybrids. Phys. Rev. B 2001, 63, 045416/1–4.CrossRefADSGoogle Scholar
  43. [43]
    Cuniberti, G.; Grossmann, F.; Gutiérrez, R. The role of contacts in molecular electronics. Adv. Solid State Phys. 2002, 42, 133–149.CrossRefADSGoogle Scholar
  44. [44]
    Nozaki, D.; Girard, Y.; Yoshizawa, K. Theoretical study of long-range electron transport in molecular junctions. J. Phys. Chem. C 2008, 112, 17408–17415.CrossRefGoogle Scholar
  45. [45]
    Ciacchi, L. C.; Payne, M. C. First-principles moleculardynamics study of native oxide growth on Si(001). Phys. Rev. Lett. 2005, 95, 196101.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Institute for Material Science and Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany

Personalised recommendations