Nano Research

, Volume 2, Issue 8, pp 630–637 | Cite as

Tuning reaction processes for the synthesis of micron and nanometer sized, single crystalline lamellae of copper 7,7,8,8-tetracyano-p-quinodimethane (Phase II) with large area

Open Access
Research Article

Abstract

Two simple methods have been demonstrated to obtain large area, single crystalline lamellae of copper-7,7,8,8-tetracyanoquinodimethane (CuTCNQ). The formation of the lamellae was a result of fine tuning of the processes during the synthesis processes of CuTCNQ phase II. This facile synthesis of large area single crystalline lamellae suggests bright prospects for the study and understanding of the electrical switching of CuTCNQ by using single crystals of its phase II, and future applications of the material in memory and switching devices.

Keywords

CuTCNQ lamellae single crystals phase II 

Supplementary material

12274_2009_9065_MOESM1_ESM.pdf (345 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Potember, R. S.; Hoffman, R. C.; Poehler, T. O. Molecular electronics. Johns Hopkins APL Tech. Dig. 1986, 7, 129–141.Google Scholar
  2. [2]
    Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R. Whence molecular electronics? Science 2004, 306, 2055–2056.PubMedCrossRefGoogle Scholar
  3. [3]
    Borissov, M. Molecular electronics. In Proceedings of the 4th International School on Condensed Matter Physics, Varna, Bulgaria, September 18–27, 1986; World Scientific Pub Co.: Singapore, 1987.Google Scholar
  4. [4]
    Mahler, G.; May, V.; Schreiber, M. Molecular Electronics: Properties, Dynamics, and Applications; CRC Press: New York, 1996.Google Scholar
  5. [5]
    Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming; World Scientific: Singapore, N. J., 2003.Google Scholar
  6. [6]
    Jortner, J.; Ratner, M. Molecular Electronics; Blackwell Science Inc, Osney Mead, Oxford [England]; Malden, MA, USA, 1997.Google Scholar
  7. [7]
    Potember, R. S.; Poehler, T. O.; Cowan, D. O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 1979, 34, 405–407.CrossRefADSGoogle Scholar
  8. [8]
    Potember, R. S.; Poehler, T. O.; Rappa, A.; Cowan, D. O.; Bloch, A. N. A reversible field induced phase transition in semiconducting films of silver and copper TNAP radicalion salts. J. Am. Chem. Soc. 1980, 102, 3659–3660.CrossRefGoogle Scholar
  9. [9]
    Potember, R. S.; Poehler, T. O.; Rappa, A.; Cowan, D. O.; Bloch, A. N. A current-controlled electrically switched memory state in silver and copper-TCNQF4 radical-ion salts. Synth. Met. 1982, 4, 371–380.CrossRefGoogle Scholar
  10. [10]
    Potember, R. S.; Poehler, T. O.; Benson, R. C. Optical switching in semiconductor organic thin films. Appl. Phys. Lett. 1982, 41, 548–550.CrossRefADSGoogle Scholar
  11. [11]
    Potember, R. S.; Poehler, T. O.; Cowan, D. O.; Carter, F. L.; Brant, P. I. In Molecular Electronic Devices; Carter, F. L., Ed.; Marcel Dekker: New York, 1982, p. 73.Google Scholar
  12. [12]
    Benson, R. C.; Hoffman, R. C.; Potember, R. S.; Bourkoff, E.; Poehler, T. O. Spectral dependence of reversible optically induced transitions in organometallic compounds. Appl. Phys. Lett. 1983, 42, 855–857.CrossRefADSGoogle Scholar
  13. [13]
    Müller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ non-volatile memories for integration in the CMOS backend-of-line: Preparation from gas/solid reaction and downscaling to an area of 0.25 μm2. Solid-State Electron. 2006, 50, 601–605.CrossRefADSGoogle Scholar
  14. [14]
    Müller, R.; Genoe, J.; Heremans, P. Nonvolatile Cu/CuTCNQ/Al memory prepared by current controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile. Appl. Phys. Lett. 2006, 88, 242–105.Google Scholar
  15. [15]
    Müller, R.; Jonge, S. D.; Myny, K.; Wouters, D. J.; Genoe, J.; Heremans, P. Organic CuTCNQ integrated in complementary metal oxide semiconductor copper back end-of-line for nonvolatile memories. Appl. Phys. Lett. 2006, 89, 223–501.CrossRefGoogle Scholar
  16. [16]
    Müller, R.; Naulaerts, R.; Billen, J.; Genoe, J.; Heremans, P. CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode. Appl. Phys. Lett. 2007, 90, 063503.Google Scholar
  17. [17]
    Xiao, K.; Ivanov, I. N.; Puretzky, A. A.; Liu, Z.; Geohegan, D. B. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 2006, 18, 2184–2188.CrossRefGoogle Scholar
  18. [18]
    Xiao, K.; Tao, J.; Pan, Z. W.; Puretzky, A. A.; Ivanov, I. N.; Pennycook, S. J.; Geohegan, D. B. Single-crystal organic nanowires of copper-tetracyanoquinodimethane: Synthesis, patterning, characterization, and device applications. Angew. Chem. Int. Ed. 2007, 46, 2650–2654.CrossRefGoogle Scholar
  19. [19]
    Kamitsos, E. I.; Tzinis, C. H.; Risen, W. M. Raman study of the mechanism of electrical switching in CuTCNQ films. Solid State Commun. 1982, 42, 561–565.CrossRefADSGoogle Scholar
  20. [20]
    Kamitsos, E. I.; Risen, W. M. Optically induced transformations of metal TCNQ materials. Solid State Commun. 1983, 45, 165–169.CrossRefADSGoogle Scholar
  21. [21]
    Kamitsos, E. I.; Risen, W. M. Raman studies in CuTCNQ: Resonance Raman spectral observations and calculations for TCNQ ion radicals. J. Chem. Phys. 1983, 79, 5808–5819.CrossRefADSGoogle Scholar
  22. [22]
    Thurzo, I.; Zahn, D. R. T. Revealing ionic motion molecular solids. J. Appl. Phys. 2006, 99, 023701.CrossRefADSGoogle Scholar
  23. [23]
    Zhou, Z. X.; Xiao, K.; Jin, R.; Mandrus, D.; Tao, J.; Geohegan, D. B.; Pennycook, S. One-dimensional electron transport in Cu-tetracyanoquinodimethane organic nanowires. Appl. Phys. Lett. 2007, 90, 193115.CrossRefADSGoogle Scholar
  24. [24]
    Flannigan, D. J.; Lobastov, V. A.; Zewail, A. H. Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 2007, 46, 9206–9210.CrossRefGoogle Scholar
  25. [25]
    O’Mullane, A. P.; Fay, N.; Nafady, A.; Bond, A. M. Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization. J. Am. Chem. Soc. 2007, 129, 2066–2073.PubMedCrossRefGoogle Scholar
  26. [26]
    Neufeld, A. K.; O’Mullane, A. P.; Bond, A. M. Control of localized nanorod formation and patterns of semiconducting CuTCNQ phase I crystals by scanning electrochemical microscopy. J. Am. Chem. Soc. 2005, 127, 13846–13853.PubMedCrossRefGoogle Scholar
  27. [27]
    Harris, A. R.; Neufeld, A. K.; O’Mullane, A. P.; Bond, A. M.; Morrison, R. J. S. Voltammetric, EQCM, spectroscopic, and microscopic studies on the electrocrystallization of semiconducting, phase I, CuTCNQ on carbon, gold, and platinum electrodes by a nucleation-growth process. J. Electrochem. Soc. 2005, 152, C577–C583.CrossRefGoogle Scholar
  28. [28]
    O’Mullane, A. P.; Neufeld, A. K.; Bond, A. M. Distinction of the two phases of CuTCNQ by scanning electrochemical microscopy. Anal. Chem. 2005, 77, 5447–5452.PubMedCrossRefGoogle Scholar
  29. [29]
    Neufeld, A. K.; Madsen, I.; Bond, A. M.; Hogan, C. F. Phase, morphology, and particle size changes associated with the solid-solid electrochemical interconversion of TCNQ and semiconducting CuTCNQ (TCNQ=tetracyano quinodimethane). Chem. Mater. 2003, 15, 3573–3585.CrossRefGoogle Scholar
  30. [30]
    Matsumoto, M.; Nishio, Y.; Tachibana, H.; Nakamura, T.; Kawabata, Y.; Samura, H.; Nagamura, T. Switching and memory phenomena of Cu-TCNQ thin films triggered by a stimulus with an STM tip. Chem. Lett. 1991, 6, 1021–1024.CrossRefGoogle Scholar
  31. [31]
    Hu, Z. P.; Shen, Z. X.; Qin, L.; Tang, S. H.; Kuok, M. H.; Xu, G. Q.; Mok, K. F.; Huang, H. H. High pressure Raman studies of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and CuTCNQ. J. Mol. Struct. 1995, 356, 163–168.CrossRefADSGoogle Scholar
  32. [32]
    Gu, N.; Yang, X. M.; Sheng, H. Y.; Lu, W.; Wei, Y. Electrical switch properties of CuTCNQ organic crystals with nanometer feature size. Synth. Met. 1995, 71, 2221–2222.CrossRefGoogle Scholar
  33. [33]
    Gu, N.; Zhang, H. Q.; Wei, Y.; Shen, H. Y.; Zhang, L. Rectifying phenomenon of Cu-TCNQ organometallic crystallite device. Supramol. Sci. 1998, 5, 691–693.CrossRefGoogle Scholar
  34. [34]
    Oyamada, T.; Tanaka, H.; Matsushige, K.; Sasabe, H.; Adachi, C. Switching effect in Cu:TCNQ charge transfercomplex thin films by vacuum codeposition. Appl. Phys. Lett. 2003, 83, 1252–1254.CrossRefADSGoogle Scholar
  35. [35]
    Hoagland, J. J.; Wang, X. D.; Hipps, K. W. Characterization of Cu-CuTCNQ-M devices using scanning electron microscopy and scanning tunneling microscopy. Chem. Mater. 1993, 5, 54–60.CrossRefGoogle Scholar
  36. [36]
    Duan, H.; Mays, M. D.; Cowan, D. O.; Kruger, J. The importance of interfaces and phases in switching and memory systems containing semiconducting chargetransfer complexes. Synth. Met. 1989, 28, c675–c680.CrossRefGoogle Scholar
  37. [37]
    Sato, C.; Wakamatsu, S.; Tadokoro, K.; Ishii, K. Polarized memory effect in the device including the organic chargetransfer complex, copper-tetracyanoquinodimethane. J. Appl. Phys. 1990, 68, 6535–6537.CrossRefADSGoogle Scholar
  38. [38]
    Kever, T.; Böttger, U.; Schindler, C.; Waser, R. On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl. Phys. Lett. 2007, 91, 083506.CrossRefADSGoogle Scholar
  39. [39]
    Billen, J.; Steudel, S.; Müller, R.; Genoe, J.; Heremans, P. A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl. Phys. Lett. 2007, 91, 263507.Google Scholar
  40. [40]
    Heintz, R. A.; Zhao, H. H.; Xiang, O. Y.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.CrossRefGoogle Scholar
  41. [41]
    Liu, Y. L.; Ji, Z. Y.; Tang, Q. X.; Jiang, L.; Li, H. X.; He, M.; Hu, W. P.; Zhang, D. Q.; Jiang, L.; Wang, X. K.; Wang, C.; Liu, Y. Q.; Zhu, D. B. Particle-size control and patterning of a charge-transfer complex for nanoelectronics. Adv. Mater. 2005, 17, 2953–2957.CrossRefGoogle Scholar
  42. [42]
    Liu, Y. L.; Li, H. X.; Tu, D. Y.; Ji, Z. Y.; Wang, C. S.; Tang, Q. X.; Liu, M.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J. Am. Chem. Soc. 2006, 128, 12917–12922.PubMedCrossRefGoogle Scholar
  43. [43]
    Liu, Y. L.; Li, H. X.; Ji, Z. Y.; Kashimura, Y.; Tang, Q.; Furukawa, K.; Torimitsu, K.; Hu, W.; Zhu, D. A new morphology of copper 7,7,8,8-tetracyano-R-quinodimethane. Micron 2007, 38, 536–542.PubMedCrossRefGoogle Scholar
  44. [44]
    Liu, Y. L.; Ji, Z. Y.; Li, H. X.; Hu, W. P.; Zhu, D. B. In situ synthesizing molecular materials between coplanar gold micro-gap electrodes for the fabrication of molecular devices. Appl. Phys. Lett. 2008, 92, 023505.Google Scholar
  45. [45]
    Liu, S. G.; Liu, Y. Q.; Wu, P. J.; Zhu, D. B. Multifaceted study of CuTCNQ thin-film materials. Fabrication, morphology, and spectral and electrical switching properties. Chem. Mater. 1996, 8, 2779–2787.CrossRefGoogle Scholar
  46. [46]
    Liu, S. G.; Liu, Y. Q.; Zhu, D. B. Amorphous semiconducting film containing nanometer particles of CuTCNQ: Preparation, characterization and electrical switching property. Thin Solid Films 1996, 280, 271–277.CrossRefADSGoogle Scholar
  47. [47]
    Sun, S. Q.; Wu, P. J.; Zhu, D. B. Electronic switching properties in nanometer-sized Cu(TCNQ)2 powder compactions. Solid State Commun. 1996, 99, 237–240.CrossRefADSGoogle Scholar
  48. [48]
    Liu, S. G.; Liu, Y. Q.; Wu, P. J.; Zhu, D. B.; Tian, H.; Chen, K. C. Characterization and electrical property of moltengrown CuTCNQ film material. Thin Solid Films 1996, 289, 300–305.CrossRefADSGoogle Scholar
  49. [49]
    Sun, S. Q.; Wu, P. J.; Zhu, D. B. The preparation, characterization of amorphous Cu-TCNQ film with a low degree of charge-transfer (DCT) and its electric switching properties. Thin Solid Films 1997, 301, 192–196.CrossRefADSGoogle Scholar
  50. [50]
    Sun, S. Q.; Xu, X.; Wu, P. J.; Zhu, D. B. Characterization an delectrical switching properties of Cutetracyanoquinodimethane films formed under different conditions. J. Mater. Sci. Lett. 1998, 17, 719–721.CrossRefGoogle Scholar
  51. [51]
    Liu, H. B.; Zhao, Q.; Li, Y. C.; Liu, Y.; Lu, F. S.; Zhuang, J. P.; Wang, S.; Jiang, L.; Zhu, D. B.; Yu, D. P.; Chi, L. F. Field emission properties of large-area nanowires of organic charge-transfer complexes. J. Am. Chem. Soc. 2005, 127, 1120–1121.PubMedCrossRefGoogle Scholar
  52. [52]
    Gong, J. P.; Osada, Y. Preparation of polymeric metaltetracyanoquinodimethane film and its bistable switching. Appl. Phys. Lett. 1992, 61, 2787–2789.CrossRefADSGoogle Scholar
  53. [53]
    Melby, L. R.; Harder, R. J.; Hertler, W. R.; Mahler, W.; Benson, R. E.; Mochel, W. E. Substituted quinodimethans. II. Anion-radical derivatives and complexes of 7, 7, 8, 8-tetracyanoquinodimethan. J. Am. Chem. Soc. 1962, 84, 3374–3387.CrossRefGoogle Scholar
  54. [54]
    Cao, G. Y.; Ye, C. N.; Fang, F.; Xing, X. Y.; Xu, H. H.; Sun, D. L.; Chen, G. R. Scanning electron microscopy investigation of Cu-TCNQ micro/nanostructures synthesized via vapor-induced reaction method. Micron 2005, 36, 267–270.PubMedCrossRefGoogle Scholar
  55. [55]
    Kever, T.; Nauenheim, C.; Böttger, U.; Waser, R. Preparation and characterisation of amorphous Cu:7,7,8,8-tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition. Thin Solid Films 2006, 515, 1893–1896.CrossRefADSGoogle Scholar
  56. [56]
    Ikemoto, I.; Thomas, J. M.; Kuroda, H. X-ray photoelectron spectra of copper-tetracyanoquinodimethane complexes. Bull. Chem. Soc. Jpn. 1973, 46, 2237–2238.CrossRefGoogle Scholar
  57. [57]
    Lindquist, J. M.; Hemminger, J. C. High-energy resolution X-ray photoelectron spectroscopy studies of tetracyanoquinodimethane charge-transfer complexes with copper, nickel, and lithium. Chem. Mater. 1989, 1, 72–78.CrossRefGoogle Scholar
  58. [58]
    Gerlach, A.; Maas, D.; Seidel, D. Influence of gold thin-film interlayers on anodic bonding of copper microstructures produced by LIGA. Microsyst. Technol. 1998, 5, 100–104.CrossRefGoogle Scholar
  59. [59]
    Poate, J. M. Diffusion and reactions in gold films. Gold Bull. 1981, 14, 1–11.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina
  3. 3.Department of Compound Semiconductor Devices and Circuit, Institute of MicroelectronicsChinese Academy of SciencesBeijingChina

Personalised recommendations