Nano Research

, 2:774 | Cite as

Density functional theory and tight binding-based dynamical studies of carbon metal systems of relevance to carbon nanotube growth

  • Kim Bolton
  • Anders Börjesson
  • Wuming Zhu
  • Hakim Amara
  • Christophe Bichara
Open Access
Research Article

Abstract

Density functional theory (DFT) and tight binding (TB) models have been used to study systems containing single-walled carbon nanotubes (SWNTs) and metal clusters that are of relevance to SWNT growth and regrowth. In particular, TB-based Monte Carlo (TBMC) simulations at 1000 or 1500 K show that Ni atoms that are initially on the surface of the SWNT or that are clustered near the SWNT end diffuse to the nanotube end so that virtually none of the Ni atoms are located inside the nanotube. This occurs, in part, due to the lowering of the Ni atom energies when they retract from the SWNT to the interior of the cluster. Aggregation of the atoms at the SWNT end does not change the chirality within the simulation time, which supports the application of SWNT regrowth (seeded growth) as a potential route for chirality-controlled SWNT production. DFT-based geometry optimisation and direct dynamics at 2000 K show that Cr and Mo atoms in Cr5Co50 and Mo5Co50 clusters prefer to be distributed in the interior of the clusters. Extension of these calculations should deepen our understanding of the role of the various alloy components in SWNT growth.

Keywords

Carbon nanotube growth metal alloy clusters tight binding Monte Carlo direct dynamics 

References

  1. [1]
    Reich, S.; Thomsen, C.; Maultzch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; Wiley-VCH: Weinheim, 2004.Google Scholar
  2. [2]
    Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Springer: Berlin, 2001.Google Scholar
  3. [3]
    Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.CrossRefPubMedGoogle Scholar
  4. [4]
    Wang, Y. H.; Kim, M. J.; Shan, H.; Kittrell, C.; Fan, H.; Ericson, L.; Hwang, W. -F.; Arepalli, S.; Hauge, R. H.; Smalley, R. E. Continued growth of single-walled carbon nanotubes. Nano Lett. 2005, 5, 997–1002.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Abild-Pedersen, F.; Nørskov, J. K.; Rostrup-Nielsen, J. R.; Sehested J.; Helveg, S. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys. Rev. B 2006, 73, 115419.CrossRefADSGoogle Scholar
  6. [6]
    Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosén, A.; Bolton, K. The importance of strong carbonmetal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Shibuta, Y.; Maruyama, S. Molecular dynamics simulation of generation process of SWNTs. Physica B 2002, 323, 187–189.CrossRefADSGoogle Scholar
  8. [8]
    Ding, F.; Bolton, K.; Rosén, A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B. 2004, 108, 17369–17377.CrossRefGoogle Scholar
  9. [9]
    Zheng, G.; Irle, S.; Morokuma, K. Fe/C interactions during SWNT growth with C2 feedstock molecules: A quantum chemical molecular dynamics study. J. Nanosci. Nanotechnol. 2006, 6, 1259–1270.CrossRefPubMedGoogle Scholar
  10. [10]
    Gavillet, J.; Loiseau, A.; Journet, C.; Willaime, F.; Ducastelle, F.; Charlier, J. -C. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 275504.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Raty, J. -Y.; Gygi, F.; Galli, G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phys. Rev. Lett. 2005, 95, 96103.CrossRefADSGoogle Scholar
  12. [12]
    Amara, H.; Roussel, J. -M.; Bichara, C.; Gaspard, J. -P.; Ducastelle, F. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni C system. Phys. Rev. B 2009, 79, 014109.CrossRefADSGoogle Scholar
  13. [13]
    Amara, H.; Bichara, C.; Ducastelle, F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapour deposition. Phys. Rev. Lett. 2008, 100, 056105.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Börjesson, A.; Zhu, W.; Amara, H.; Bichara, C.; Bolton, K. Computational studies of metal carbon nanotube interfaces for regrowth and electronic transport. Nano Letters, 2009, 9, 1117–1120.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Frenkel, D.; Smit, B. Understanding Molecular Simulation; Oxford University Press: Oxford, 1997.Google Scholar
  16. [16]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169–11186.CrossRefADSGoogle Scholar
  17. [17]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefADSGoogle Scholar
  18. [18]
    Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079CrossRefADSGoogle Scholar
  19. [19]
    Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569CrossRefADSGoogle Scholar
  20. [20]
    Schebarchov, D.; Hendy, S. C. Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett. 2008, 8, 2253–2257.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Kim Bolton
    • 1
  • Anders Börjesson
    • 1
    • 2
  • Wuming Zhu
    • 2
  • Hakim Amara
    • 3
  • Christophe Bichara
    • 4
  1. 1.School of EngineeringUniversity of BoråsBoråsSweden
  2. 2.Department of PhysicsGothenburg UniversityGothenburgSweden
  3. 3.LEM, ONERA/CNRSChatillonFrance
  4. 4.CINaM, CNRSMarseilleFrance

Personalised recommendations