Nano Research

, Volume 2, Issue 8, pp 624–629 | Cite as

Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire

  • Giulia Mantini
  • Yifan Gao
  • A. D’Amico
  • C. Falconi
  • Zhong Lin Wang
Open Access
Research Article


The equilibrium piezoelectric potential distribution in a deformed ZnO semiconductive nanowire has been systematically investigated in order to reveal its dependence on the donor concentration, applied force, and geometric parameters. In particular, the donor concentration markedly affects the magnitude and distribution of the electric potential. At a donor concentration of ND>1018 cm−3, the piezopotential is almost entirely screened. Among the other parameters, a variation in the length of the nanowire does not significantly affect the potential distribution.


Nanogenerator ZnO nanowire 


  1. [1]
    Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82–87.PubMedCrossRefGoogle Scholar
  2. [2]
    Wang Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  3. [3]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Xu, S.; Wei, Y. G.; Liu, J.; Yang, R.; Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.CrossRefGoogle Scholar
  8. [8]
    Gao, Y.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.PubMedCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    Falconi, C.; Mantini, G.; D’Amico A.; Wang, Z. L. Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens. Actuators B: Chem. 2009, 139, 511–519.CrossRefGoogle Scholar
  10. [10]
    Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P. Electrodynamics of Continuous Media, 2nd Ed.; Pergamon: New York, 1984.Google Scholar
  11. [11]
    Van de Walle, C. G. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 2000, 85, 1012–1015.CrossRefADSGoogle Scholar
  12. [12]
    Cox, S. F. J.; Davis, E. A.; Cottrell, S. P.; King, P. J. C.; Lord, J. S.; Gil, J. M.; Alberto, H. V.; Vilão, R. C.; Duarte, J. P.; de Campos, N. A.; Weidinger, A.; Lichti, R.L.; Irvine, S. J. C. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 2001, 86, 2601–2604.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Look, D. C.; Farlow, G. C.; Reunchan, P.; Limpijumnong, S.; Zhang, S. B.; Nordlund, K. Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 2005, 95, 225502.Google Scholar
  14. [14]
    Gao, Y.; Wang, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009, 9, 1103–1110.PubMedCrossRefADSGoogle Scholar
  15. [15]
    Lu, M. P.; Song, J.; Lu, M. Y.; Chen, M. T.; Gao, Y.; Chen, L. J.; Wang, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227.PubMedCrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Giulia Mantini
    • 1
    • 2
  • Yifan Gao
    • 1
  • A. D’Amico
    • 2
  • C. Falconi
    • 2
  • Zhong Lin Wang
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electronic EngineeringUniversity of Tor VergataRomaItaly

Personalised recommendations