Nano Research

, Volume 2, Issue 8, pp 607–616 | Cite as

Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses

Open Access
Research Article


The nano era demands the synthesis of new nanostructured materials, if possible by simplified techniques, with remarkable properties and versatile applications. Here, we demonstrate a new single-step reproducible melt-quench methodology to fabricate core-shell bimetallic (Au0-Ag0) nanoparticles (28–89 nm) embedded glasses (dielectrics) by the use of a new reducing glass matrix, K2O-B2O3-Sb2O3 (KBS) without applying any external reducing agent or multiple processing steps. The surface plasmon resonance (SPR) band of these nanocomposites embedded in KBS glass is tunable in the range 554–681 nm. More remarkably, taking advantage of the selective reduction capability of Sb2O3, this single-step methodology is used to fabricate inter-metallic: rare-earth ions co-embedded (Au-Ag:Sm3+) dielectric (glass)-based-dnanocomposites and study the effect of enhanced local field on the red upconversion fluorescence of Sm3+ ions at 636 nm. The enhancement is found to be about 2 folds. This single-step in-situ selective reduction approach can be used to fabricate a variety of hybrid-nanocomposite devices for laser based applications (see supplementary information).


Gold-silver nanostructures core-shell morphology surface plasmon resonance antimony glass metal-enhanced rare earth fluorescence 

Supplementary material

12274_2009_9061_MOESM1_ESM.pdf (710 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Hu, M.-S.; Chen, H.-L.; Shen, C.-H.; Hong, L.-S.; Huang, B.-R.; Chen, K.-H.; Chen, L.-C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Liu, J. F.; Chen, W.; Liu, X. M.; Zhou, K. B.; Li, Y. D. Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.CrossRefGoogle Scholar
  3. [3]
    De, G.; Rao, C. N. R. Two-dimensional Au and Au-Cu alloy nanocrystals with orientation in (111) plane embedded in glassy silica Films. J. Phys. Chem. B 2003, 107, 13597–13600.CrossRefGoogle Scholar
  4. [4]
    Armelao, L.; Barreca, D.; Bottaro, G.; Mattei, G.; Sada, C.; Tondello, E. Copper-silica nanocomposites tailored by the sol gel route. Chem. Mater. 2005, 17, 1450–1456.CrossRefGoogle Scholar
  5. [5]
    Speranza, G.; Minati, L.; Chiasera, A.; Ferrari, M.; Righini, G. C.; Ischia, G. Quantum confinement and matrix effects in silver-exchanged soda lime glasses J. Phys. Chem. C 2009, 113, 4445–4450.CrossRefGoogle Scholar
  6. [6]
    Gonella, F.; Cattaruzza, E.; Battaglin, G.; D’Acaptio, F.; Sada, C.; Mazzoldi, P.; Maurizio, C.; Mattei, G.; Martorana, A.; Longo, A.; Zontone, E. Double implantation in silica glass for metal cluster composite formation: A study by synchrotron radiation techniques. J. Non-Cryst. Solids 2001, 280, 241–248.CrossRefADSGoogle Scholar
  7. [7]
    Zhang, J.; Dong, W.; Sheng, J. W.; Zheng, J. W.; Li, J.; Qiao, L.; Jiang, L. Q. Silver nanoclusters formation in ionexchanged glasses by thermal annealing, UV-laser and X-ray irradiation. J. Cryst. Growth 2008, 310, 234–239.CrossRefADSGoogle Scholar
  8. [8]
    Gonella, F.; Mazzoldi, P. Metal nanocluster composite glasses. In Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H. S., Eds. j. Academic Press: San Diego, 2000 Vol.4, p.81.CrossRefGoogle Scholar
  9. [9]
    Selvan, S. T.; Hayakawa, T.; Nogami, M.; Kobayashi, Y.; Liz-Marzán, L. M.; Hamanaka, Y.; Nakamura, A. Sol-gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. J. Phys. Chem. B 2002, 106, 10157–10162.CrossRefGoogle Scholar
  10. [10]
    Hofmeister, H.; Drost, W. -G.; Berger A. Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers. Nanostruct. Mater. 1999, 12, 207–210.CrossRefGoogle Scholar
  11. [11]
    Grabert, H.; Devoret, M. Single-Charge Tunneling; Plenum: New York, 1992.Google Scholar
  12. [12]
    Kassab, L. R. P.; de Araújo, C. B.; Kobayashi, R. A.; de A Pinto, R. D.; da Silva, D. M. Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses. J. Appl. Phys. 2007, 102, 103515 (1–4).Google Scholar
  13. [13]
    Kassab, L. R. P.; Bomfim, F. A.; Martinelli, J. R.; Wetter, N. U.; Neto J. J.; de Araújo, C. B. Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Appl. Phys. B 2009, 94, 239–242.CrossRefADSGoogle Scholar
  14. [14]
    Pompa, P. P.; Martiradonna, L.; Della Torre, A.; Della Sala, F.; Manna, L.; De Vittorio, M..; Calabi, F.; Cingolani, R.; Rinaldi, R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006, 1, 126–130.PubMedCrossRefADSGoogle Scholar
  15. [15]
    Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic Nanoparticle Arrays: A common substrate for both surfaceenhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707–718.PubMedCrossRefGoogle Scholar
  16. [16]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Mattei, G.; de Julin Fernndez, C. D.; Mazzoldi, P.; Sada, C.; De, G.; Battaglin, G.; Sangregorio, C.; Gatteschi, D. Synthesis, structure, and magnetic properties of Co, Ni, and Co-Ni alloy nanocluster-doped SiO2 films by sol-gel processing. Chem. Mater. 2002, 14, 3440–3447.CrossRefGoogle Scholar
  18. [18]
    Hosteler, M. J.; Zhong, C. -J.; Yen, B. K. H.; Anderegg, J.; Gross, S. M.; Evans, N. D.; Porter, M.; Murrary, R. W. Stable, monolayer-protected metal alloy clusters. J. Am. Chem. Soc. 1998, 120, 9396–9399.CrossRefGoogle Scholar
  19. [19]
    Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.PubMedCrossRefGoogle Scholar
  20. [20]
    Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R.; Maeda, Y. Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B 2000, 104, 6028–6032.CrossRefGoogle Scholar
  21. [21]
    Som, T.; Karmakar, B. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses. J. Lumin. 2008, 128, 1989–1996.CrossRefGoogle Scholar
  22. [22]
    Lide, D. R., CRC Handbook of Chemistry and Physics, 75th edn; CRC Press: Boca Raton, 1975; pp.8-21–8-34.Google Scholar
  23. [23]
    Terashima, K.; Hashimoto, T.; Uchino, T.; Kim, S. -H.; Yoko, T. Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses. J. Ceram. Soc. Jpn. 1996, 104, 1008–1014.Google Scholar
  24. [24]
    Nalin, M.; Messaddeq, Y.; Ribeiro, S. J. L.; Poulain, M.; Briois, V.; Brunlkaus, G.; Rosenhahn, C.; Mosel, B. D.; Eckert, H. Structural organization and thermal properties of the Sb2O3-SbPO4 glass system. J. Mater. Chem. 2004, 14, 3398–3405.CrossRefGoogle Scholar
  25. [25]
    Vogel, W. Glass Chemistry; Springer-verlag: Berlin, 1992.Google Scholar
  26. [26]
    Persans, P. D.; Stokes, K. L. Embedded nanocrystal spectroscopy: Semiconductor and metal particles in inulators. In Handbook of Nanophase Materials; Golstein, A. N., Ed.; Marcel Dekker: New York, 1971; pp. 271–316.Google Scholar
  27. [27]
    Peng, Z. Q.; Spliethoff, B.; Tesche, B.; Walther, T.; Kleinermanns, K. Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution. J. Phys. Chem. B 2006, 110, 2549–2554.PubMedCrossRefGoogle Scholar
  28. [28]
    Chen, H. M.; Liu, R. S.; Jang, L. -Y.; Lee, J. -F.; Hu, S. F. Characterization of core-shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chem. Phys. Lett. 2006, 421, 118–123.CrossRefADSGoogle Scholar
  29. [29]
    Srnova-Sloufova, I.; Lednicky, F.; Gemperle, A; Gemperlova, J. Core-shell (Ag)Au bimetallic nanoparticles: Analysis of transmission electron microscopy images. Langmuir 2000; 16, 9928–9935.CrossRefGoogle Scholar
  30. [30]
    Moskovits, M.; Srnova-Sloufova, I.; Vlekova, B. Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 2002, 116, 10435–10446.CrossRefADSGoogle Scholar
  31. [31]
    Papavassiliou, G. C. Surface plasmons in small Au-Ag alloy particles. J. Phys. F: Metal Phys. 1976, 6, L 103–106.CrossRefADSGoogle Scholar
  32. [32]
    Beall, G. H.; Duke, D. A. Glass ceramic technology. In Glass: Science and Technology; Uhlman, D. R.; Kreidl, N. J., Eds.; Academic Press: San Diego, 1983; vol 1.Google Scholar
  33. [33]
    Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing Co: California, 1978.Google Scholar
  34. [34]
    Hayakawa, T; Selvan, S. T.; Nogami, M. Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass. Appl. Phys. Lett. 1999, 74, 1513–1515.CrossRefADSGoogle Scholar
  35. [35]
    Geddes, C. D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz J. R. Metal-enhanced fluorescence: Potential applications in HTS. Comb. Chem. High Through. Screen. 2003, 6, 109–117.Google Scholar
  36. [36]
    Zhu, J. SPR induced quenching of the 5D17F1 emission of Eu3+ doped gold colloids. Phys. Lett. A 2005, 341, 212–215.MATHCrossRefADSGoogle Scholar
  37. [37]
    Matveeva, E. G.; Shtoyko, T.; Gryczynski, I.; Akopova, I.; Gryczynski, Z. Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles. Chem. Phys. Lett. 2008, 454, 85–90.PubMedCrossRefADSGoogle Scholar
  38. [38]
    Stranik, O.; McEvoy, H. M.; McDonagh, C.; MacCraith, B. D. Plasmonic enhancement of fluorescence for sensor applications. Sens. Actuat. B 2005, 107, 148–153.CrossRefGoogle Scholar
  39. [39]
    Barnes, W. L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661–669.ADSGoogle Scholar
  40. [40]
    Enderlein, J. Single-molecule fluorescence near a metal layer. Chem. Phys. 247, 1, 1–9.Google Scholar
  41. [41]
    Liao, H. B.; Wen, W. J.; Wong, G. K. L. Photoluminescence from Au nanoparticles embedded in Au: Oxide composite films. J. Opt. Soc. Am. B 2006, 23, 2518–2521.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Glass Technology Laboratory, Glass DivisionCentral Glass and Ceramic Research Institute (Council of Scientific and Industrial Research)KolkataIndia

Personalised recommendations