Nano Research

, Volume 2, Issue 8, pp 607–616

Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses

Open Access
Research Article

DOI: 10.1007/s12274-009-9061-4

Cite this article as:
Som, T. & Karmakar, B. Nano Res. (2009) 2: 607. doi:10.1007/s12274-009-9061-4


The nano era demands the synthesis of new nanostructured materials, if possible by simplified techniques, with remarkable properties and versatile applications. Here, we demonstrate a new single-step reproducible melt-quench methodology to fabricate core-shell bimetallic (Au0-Ag0) nanoparticles (28–89 nm) embedded glasses (dielectrics) by the use of a new reducing glass matrix, K2O-B2O3-Sb2O3 (KBS) without applying any external reducing agent or multiple processing steps. The surface plasmon resonance (SPR) band of these nanocomposites embedded in KBS glass is tunable in the range 554–681 nm. More remarkably, taking advantage of the selective reduction capability of Sb2O3, this single-step methodology is used to fabricate inter-metallic: rare-earth ions co-embedded (Au-Ag:Sm3+) dielectric (glass)-based-dnanocomposites and study the effect of enhanced local field on the red upconversion fluorescence of Sm3+ ions at 636 nm. The enhancement is found to be about 2 folds. This single-step in-situ selective reduction approach can be used to fabricate a variety of hybrid-nanocomposite devices for laser based applications (see supplementary information).


Gold-silver nanostructures core-shell morphology surface plasmon resonance antimony glass metal-enhanced rare earth fluorescence 

Supplementary material

12274_2009_9061_MOESM1_ESM.pdf (710 kb)
Supplementary material, approximately 340 KB.

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Glass Technology Laboratory, Glass DivisionCentral Glass and Ceramic Research Institute (Council of Scientific and Industrial Research)KolkataIndia

Personalised recommendations