Nano Research

, Volume 2, Issue 6, pp 509–516 | Cite as

Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces

  • Alfonso Reina
  • Stefan Thiele
  • Xiaoting Jia
  • Sreekar Bhaviripudi
  • Mildred S. Dresselhaus
  • Juergen A. Schaefer
  • Jing Kong
Open Access
Research Article

Abstract

We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, one- or two- layer graphene regions occupy up to 87% of the film area. Single layer coverage accounts for 5%–11% of the overall film. These regions expand across multiple grain boundaries of the underlying polycrystalline Ni film. The number density of sites with multilayer graphene/graphite (>2 layers) is reduced as the cooling rate decreases. These films can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni film and the CVD chamber. Here, we demonstrate the formation of films as large as 1 in2. These findings represent an important step towards the fabrication of large-scale high-quality graphene samples.

Keywords

Graphene chemical vapor deposition nickel catalyst carbon nanomaterials 

Supplementary material

12274_2009_9059_MOESM1_ESM.pdf (632 kb)
Supplementary material, approximately 636 KB.

References

  1. [1]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  4. [4]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefPubMedGoogle Scholar
  5. [5]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, John J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, Andrea C.; Coleman, Jonathan N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  6. [6]
    Li, D.; Mueller, Marc B; Gilje, S.; Kaner, Richard B.; Wallace, Gordon G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefPubMedGoogle Scholar
  8. [8]
    Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 2007, 445, 51–56.CrossRefADSGoogle Scholar
  9. [9]
    Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin epitaxial graphite: 2-D electron gas properties and a route toward grapheme-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar
  10. [10]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C. Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312, 1191–1196.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Pan, Y.; Shi, D. X.; Gao, H. J. Formation of graphene on Ru(0001) surface. Chin. Phys. 2007, 16, 3151–3153.CrossRefADSGoogle Scholar
  13. [13]
    Dato, A.; Radmilovic, V.; Lee, Z. H.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefADSGoogle Scholar
  15. [15]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefPubMedADSGoogle Scholar
  17. [17]
    De Arco, L. G.; Yi, Z.; Kumar, A.; Chongwu, Z., Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 2009, 8, 135–138.CrossRefADSGoogle Scholar
  18. [18]
    Fujita, D.; Yoshihara, K. Surface precipitation process of epitaxially grown graphite (0001) layers on carbondoped nickel(111) surface. J. Vac. Sci. Technol. A 1994, 12, 2134–2139.CrossRefADSGoogle Scholar
  19. [19]
    Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.CrossRefADSGoogle Scholar
  20. [20]
    Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.Google Scholar
  21. [21]
    Muradov, N. Z. How to produce hydrogen from fossil fuels without CO2 emission. Int. J. Hydrogen Energ. 1993, 18, 211–215.CrossRefGoogle Scholar
  22. [22]
    Takenaka, S.; Shigeta, Y.; Tanabe, E.; Otsuka, K. Methane decomposition into hydrogen and carbon nanofibers over supported Pd Ni catalysts: Characterization of the catalysts during the reaction. J. Phys. Chem. B 2004, 108, 7656–7664.CrossRefGoogle Scholar
  23. [23]
    Fujita, D.; Homma, T. Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation. Surf. Interface Anal. 1992, 19, 430–434.CrossRefGoogle Scholar
  24. [24]
    Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical vapor deposition grown graphene films. Submitted to Nanotechnology.Google Scholar
  25. [25]
    Wang, Y. M.; Cheng, S.; Wei, Q. M.; Ma, E.; Nieh, T. G.; Hamza, A. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta Mater. 2004, 51, 1023–1028.CrossRefGoogle Scholar
  26. [26]
    Shen, T. D.; Schwarz, R. B.; Feng, S.; Swadener, J. G.; Huang, J. Y.; Tang, M.; Zhang, H. Z.; Vogel, S. C.; Zhao, Y. S. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation. Acta Mater. 2007, 55, 5007–5013.CrossRefGoogle Scholar
  27. [27]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefPubMedGoogle Scholar
  28. [28]
    Lee, D. S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. H. Raman spectra of epitaxial fraphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320–4325.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Frade, J. R. Kinetics of nucleation and growth. 1. Reation controlled growth. J. Mater. Sci. 1993, 28, 6715–6718.CrossRefADSGoogle Scholar
  30. [30]
    Frade, J. R. Kinetics of nucleation and growth. 2. Diffusion-controlled growth. J. Mater. Sci. 1994, 29, 169–174.CrossRefADSGoogle Scholar
  31. [31]
    Gambaryan-Roisman, T.; Litovsky, E.; Shapiro, M.; Shavit, A. Reaction-diffusion model of surface and grain boundary segregation kinetics. Int. J. Heat Mass Tran. 2000, 43, 4135–4151.MATHCrossRefGoogle Scholar
  32. [32]
    Song, S.; Yuan, Z.; Xu, T. Non-equilibrium segregation of boron at austenite grain boundaries. J. Mater. Sci. Lett. 1991, 10, 1232–1234.CrossRefGoogle Scholar
  33. [33]
    Foley, J. D.; van Dan, A.; Feiner, S, K.; Hughes, J. F. Computer Graphics: Principles and Practice; Addison-Wesley systems programming series: New Jersey, 1995.Google Scholar
  34. [34]
    Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.Google Scholar
  35. [35]
    Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.CrossRefPubMedADSGoogle Scholar
  36. [36]
    Thompson, C. V. Grain growth in thin films. Annu. Rev. Mater. Sci. 1990. 20, 245–268.CrossRefADSGoogle Scholar
  37. [37]
    Thompson, C. V.; Carel, R. Stress and grain growth in thin films. J. Mech. Phys. Solids 1996, 44, 657–673.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alfonso Reina
    • 1
  • Stefan Thiele
    • 2
  • Xiaoting Jia
    • 1
  • Sreekar Bhaviripudi
    • 3
  • Mildred S. Dresselhaus
    • 3
    • 4
  • Juergen A. Schaefer
    • 2
  • Jing Kong
    • 3
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institut für Physik and Institut für Mikro- und NanotechnologienTechnische Universität IlmenauIlmenauGermany
  3. 3.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations