Nano Research

, Volume 2, Issue 7, pp 565–574 | Cite as

Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid

Open Access
Research Article


Submicrometer sized pure cubic phase, Eu3+ doped, and Yb3+/Er3+ co-doped α-NaYF4 particles with octahedral morphology have been prepared in acetic acid. The acetate anion plays a critical role in the formation of such symmetric octahedral structures through its selective adsorption on the (111) faces of the products. The size of the as-prepared octahedra can be tuned by varying the amount of sodium acetate added to the acetic acid. A possible formation mechanism for these octahedra has been proposed. The doped α-NaYF4 octahedral submicrometer particles show down-conversion and up-conversion photoluminescence typical of these materials.


α-NaYF4 octahedral acetic acid photoluminescence 


  1. [1]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  2. [2]
    Williams, F.; Nozik, A. J. Solid-state perspectives of the photoelectrochemistry of semiconductor electrolyte junctions. Nature 1984, 312, 21–27.CrossRefADSGoogle Scholar
  3. [3]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Klarreich, E. Biologists join the dots. Nature 2001, 413, 450–452.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61–68.CrossRefGoogle Scholar
  8. [8]
    Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–IV and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.CrossRefGoogle Scholar
  9. [9]
    Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.CrossRefPubMedGoogle Scholar
  10. [10]
    Xue, C.; Mirkin, C. A. pH-switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed. 2007, 46, 2036–2038.CrossRefGoogle Scholar
  11. [11]
    Metraux, G. S.; Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17, 412–415.CrossRefGoogle Scholar
  12. [12]
    Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z. Y.; Ginger, D.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.CrossRefGoogle Scholar
  13. [13]
    Peng, S.; Lee, Y. M.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  14. [14]
    Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673–3677.CrossRefGoogle Scholar
  15. [15]
    Kramer, K. W.; Biner, D.; Frei, G.; Gudel, H. U.; Hehlen, M. P.; Luthi, S. R. Hexagonal sodium yttrium fluoride-based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.CrossRefGoogle Scholar
  16. [16]
    Yu, M.; Lin, J.; Fu, J.; Zhang, H. J.; Han, Y. C. Sol-gel synthesis and photoluminescent properties of LaPO4: A (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J. Mater. Chem. 2003, 13, 1413–1419.CrossRefGoogle Scholar
  17. [17]
    Si, R.; Zhang, Y. W.; You, L. P.; Yan, C. H. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew. Chem. Int. Ed. 2005, 44, 3256–3260.CrossRefGoogle Scholar
  18. [18]
    Cao, Y. C. Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 2004, 126, 7456–7457.CrossRefPubMedGoogle Scholar
  19. [19]
    Yu, T. Y.; Joo, J.; Park, Y. I.; Hyeon, T. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew. Chem. Int. Ed. 2005, 44, 7411–7414.CrossRefGoogle Scholar
  20. [20]
    Xu, A. W.; Fang, Y. P.; You, L. P.; Liu, H. Q. A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J. Am. Chem. Soc. 2003, 125, 1494–1495.CrossRefPubMedGoogle Scholar
  21. [21]
    Buehler, G.; Feldmann, C. Microwave-assisted synthesis of luminescent LaPO4:Ce, Tb nanocrystals in ionic liquids. Angew. Chem. Int. Ed. 2006, 45, 4864–4867.CrossRefGoogle Scholar
  22. [22]
    Riwotzki, K.; Meyssamy, H.; Schnablegger, H.; Kornowski, A.; Haase, M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce, Tb nanocrystals. Angew. Chem. Int. Ed. 2001, 40, 573–576.CrossRefGoogle Scholar
  23. [23]
    Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.CrossRefPubMedGoogle Scholar
  24. [24]
    Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.CrossRefPubMedGoogle Scholar
  25. [25]
    Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757–2765.CrossRefGoogle Scholar
  26. [26]
    Huignard, A.; Buissette, V.; Laurent, G.; Gacoin, T.; Boilot, J. P. Synthesis and characterizations of YVO4:Eu colloids. Chem. Mater. 2002, 14, 2264–2269.CrossRefGoogle Scholar
  27. [27]
    Li, Z. H.; Zeng, J. H.; Li, Y. D. Solvothermal route to synthesize well-dispersed YBO3:Eu nanocrystals. Small 2007, 3, 438–443.CrossRefPubMedGoogle Scholar
  28. [28]
    Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.CrossRefADSGoogle Scholar
  29. [29]
    Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Ge, Y.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.CrossRefADSGoogle Scholar
  30. [30]
    Wang, L. Y.; Li, Y. D. Green upconversion nanocrystals for DNA detection. Chem. Commun. 2006, 2557–2559.Google Scholar
  31. [31]
    Diamente, P. R.; Raudsepp, M.; van Veggel, F. C. J. M. Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv. Funct. Mater. 2007, 17, 363–368.CrossRefGoogle Scholar
  32. [32]
    Zhuang, J. L.; Liang, L. F.; Sung, H. H. Y.; Yang, X. F.; Wu, M. M.; Williams, I. D.; Feng, S. H.; Su, Q. Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln = Y, Dy Yb). Inorg. Chem 2007, 46, 5404–5410.CrossRefPubMedGoogle Scholar
  33. [33]
    Wang, L. Y.; Li, Y. D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.CrossRefGoogle Scholar
  36. [36]
    Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H. Singlecrystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005, 127, 3260–3261.CrossRefPubMedGoogle Scholar
  37. [37]
    Wei, Y.; Lu, F. Q.; Zhang, X. R.; Chen, D. P. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates. Chem. Mater. 2006, 18, 5733–5737.CrossRefGoogle Scholar
  38. [38]
    Li, C. X.; Yang, J.; Quan, Z. W.; Yang, P. P.; Kong, D. Y.; Lin, J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources. Chem. Mater. 2007, 19, 4933–4942.CrossRefGoogle Scholar
  39. [39]
    Tao, F.; Wang, Z. J.; Yao, L. Z.; Cai, W. L.; Li, X. G. Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. J. Phys. Chem. C. 2007, 111, 3241–3245.CrossRefGoogle Scholar
  40. [40]
    Wang, Z. J.; Tao, F.; Cai, W. L.; Yao, L. Z.; Li, X. G. Controlled-synthesis and up-conversion luminescence of NaYF4:Yb, Er phosphors. Solid State Commun. 2007, 144, 255–258.CrossRefADSGoogle Scholar
  41. [41]
    Sun, Y. J.; Chen, Y.; Tian, L. J.; Yu, Y.; Kong, X. G.; Zhao, J. W.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 2007, 18, 275609.Google Scholar
  42. [42]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.CrossRefPubMedADSGoogle Scholar
  44. [44]
    Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with O h symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863–14870.CrossRefPubMedGoogle Scholar
  45. [45]
    Li, H.; Liu, R.; Zhao, R. X.; Zheng, Y. F.; Chen, W. X.; Xu, Z. D. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids. Cryst. Growth Des. 2006, 6, 2795–2798.CrossRefGoogle Scholar
  46. [46]
    Gou, L. F.; Murphy, C. J. Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 2003, 3, 231–234.CrossRefADSGoogle Scholar
  47. [47]
    Gou, L. F.; Murphy, C. J. Controlling the size of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14, 735–738.CrossRefGoogle Scholar
  48. [48]
    Peng, Z. P.; Jiang, Y. S.; Song, Y. H.; Wang, C.; Zhang, H. J. Morphology control of nanoscale PbS particles in a polyol process. Chem. Mater. 2008, 20, 3153–3162.CrossRefGoogle Scholar
  49. [49]
    Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D. L.; Meeldijk, J.; Hickey, S. G. The hidden role of acetate in the PbSe nanocrystal synthesis. J. Am. Chem. Soc. 2006, 128, 6792–6793.CrossRefPubMedGoogle Scholar
  50. [50]
    Murray, B. J.; Li, Q.; Newberg, J. T.; Menke, E. J.; Hemminger, J. C.; Penner, R. M. Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Lett. 2005, 5, 2319–2324.CrossRefPubMedADSGoogle Scholar
  51. [51]
    Siegfried, M. J.; Choi, K. S. Directing the architecture of cuprous oxide crystals during electrochemical growth. Angew. Chem. Int. Ed. 2005, 44, 3218–3223.CrossRefGoogle Scholar
  52. [52]
    Schultz, R. A.; Jensen, M. C.; Bradt, R. C. Single-crystal cleavage of brittle materials. Int. J. Fract. 1994, 65, 291–312.CrossRefGoogle Scholar
  53. [53]
    Liang, L. F.; Wu, H.; Hu, H. L.; Wu, M. M.; Su, Q. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1−xYbxF4:Ln3+ (Ln3+ = Er3+ or Tm3+). J. Alloy. Compd. 2004, 368, 94–100.CrossRefGoogle Scholar
  54. [54]
    Vegard, L. The constitution of the mixed crystals and the filling of space of the atoms. Z. Phys. 1921, 5, 17–26.CrossRefADSGoogle Scholar
  55. [55]
    Lue, Q.; Guo, F. Y.; Sun, L.; Li, A. H.; Zhao, L. C. Surface modification of ZrO2:Er3+ nanoparticles to attenuate aggregation and enhance upconversion fluorescence. J. Phys. Chem. C 2008, 112, 2836–2844.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChangchunChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Division of Chemical and Biomolecular EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations