Nano Research

, Volume 2, Issue 7, pp 558–564 | Cite as

Preparation and field emission properties of titanium polysulfide nanobelt films

Open Access
Research Article

Abstract

TiS3 nanobelt films, with widths of about 0.1–12 μm, thickness of about 20–250 nm, and lengths of up to 200 μm, have been grown on Ti substrates by a surface-assisted chemical-vapor-transport at 450 °C for 8 h. The TiS3 nanobelt films were converted into TiS1.71 nanobelt films by pyrolysis in a vacuum at 600 °C for 2 h. The work functions of the two films were determined by ultraviolet photoelectron spectroscopy measurements to be 4.60 and 4.44 eV, respectively. Preliminary field emission experiments using the nanostructures as cold electron cathodes showed that both materials gave significant emission currents. The turn-on fields (defined as the electric field required to produce a current density of 10 μA/cm2) were about 1.0 and 0.9 V/μm, respectively, whereas the threshold fields (defined as the electric field required to produce a current density of 1 mA/cm2) were about 5.6 and 4.0 V/μm, respectively. These data reveal that both materials have potential applications in field emission devices.

Keywords

Nanowire film titanium sulfide chemical vapor-transport field emission 

References

  1. [1]
    Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum-mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 1990, 41, 477–496.Google Scholar
  2. [2]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  3. [3]
    Weller, H. Colloidal semiconductor Q-particles—Chemistry in the transition region between solid-state and molecules. Angew. Chem. Int. Ed. 1993, 32, 41–53.CrossRefGoogle Scholar
  4. [4]
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  5. [5]
    Kovtyukhova, N. I.; Mallouk, T. E. Nanowires as building blocks for self-assembling logic and memory circuits. Chem. Eur. J. 2002, 8, 4355–4363.CrossRefGoogle Scholar
  6. [6]
    Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824.CrossRefGoogle Scholar
  7. [7]
    Wu, X. C.; Tao, Y. R.; Hu, Y. M.; Song, Y.; Hu, Z.; Zhu, J. J.; Dong, L. Tantalum disulfide nanobelts: Preparation, superconductivity and field emission. Nanotechnology 2006, 17, 201–205.CrossRefADSGoogle Scholar
  8. [8]
    Fang, X.; Bando, Y.; Ye, C.; Golberg, D. Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 2007, 3048–3050.Google Scholar
  9. [9]
    Yoon, H.; Seo, K.; Moon, H.; Varadwaj, K. S. K.; In, J.; Kim, B. Aluminum foil mediated noncatalytic growth of ZnO nanowire arrays on an indium tin oxide substrate. J. Phys. Chem. C 2008, 112, 9181–9185.CrossRefGoogle Scholar
  10. [10]
    Li, L.; Fang, X.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X.; Zhang, Y.; Pan, S.; Li, G.; Zhang, L. Crystallinity-controlled germanium nanowire arrays: Potential field emitters. Adv. Funct. Mater. 2008, 18, 1080–1088.CrossRefGoogle Scholar
  11. [11]
    Ait-Ouali, A.; Jandl, S. Photoluminescence study of the one-dimensional material ZrS3 and its solid solution Zr1−xHfxS3. Phys. Rev. B 1996, 53, 9852–9858.CrossRefADSGoogle Scholar
  12. [12]
    Shepherd, F. R.; Williams, P. M. Photoemission studies of band structures of transition-metal dichalcogenides. 1. Group-IVA and Group-IVB. J. Phys. C: Solid State Phys. 1974, 7, 4416–4426.CrossRefADSGoogle Scholar
  13. [13]
    Chen, C. H.; Fabian, W.; Brown, F. C.; Woo, K. C.; Davies, B.; De Long, B.; Thompson, A. H. Angle-resolved photoemission-studies of the band-structure of TiSe2 and TiS2. Phys. Rev. B. 1980, 21, 615–624.CrossRefADSGoogle Scholar
  14. [14]
    Chang, H. S. W.; Schleich, D. M. TiS2 and TiS3 thin-films prepared by MocVD. J. Solid State Chem. 1992, 100, 62–70.CrossRefADSGoogle Scholar
  15. [15]
    Ma, J. J.; Liu, X.Y.; Cao, X. J.; Feng, S. H.; Fleet, M. E. Bundle of nanobelts up to 4 cm in length: One-step synthesis and preparation of titanium trisulfide (TiS3) nanomaterials. Eur. J. Inorg. Chem. 2006, 519–522.Google Scholar
  16. [16]
    Nath, M.; Rao, C. N. R. Nanotubes of group 4 metal disulfides. Angew. Chem. 2002, 41, 3451–3454.CrossRefGoogle Scholar
  17. [17]
    Chen, J.; Tao, Z. L.; Li, S. L. Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem. Int. Ed. 2003, 42, 2147–2151.CrossRefGoogle Scholar
  18. [18]
    Zhang, Y.; Li, Z. K.; Jia, H. B.; Luo, X. H.; Xu, J.; Zhang, X. H.; Yu, D. P. TiS2 whisker growth by a simple vapor-deposition meth. J. Cryst. Growth 2006, 293, 124–127.CrossRefADSGoogle Scholar
  19. [19]
    Tao, Y. R.; Wu, X. C.; Zhang, Y. L.; Dong, L.; Zhu, J. J.; Hu, Z. Surface-assisted synthesis of microscale hexagonal plates and flower-like patterns of single-crystalline titanium disulfide and their field-emission properties. Cryst. Growth Des. 2008, 8, 2990–2994.CrossRefGoogle Scholar
  20. [20]
    Jennings, H. M. On reactions between silicon and nitrogen. 1. Mechanisms. J. Mater. Sci. 1983, 18, 951–967.CrossRefADSGoogle Scholar
  21. [21]
    Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C.; Wang, Z. L. Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties. Adv. Mater. 2003, 15, 1835–1840.CrossRefGoogle Scholar
  22. [22]
    Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699–2701.CrossRefADSGoogle Scholar
  23. [23]
    Gadzuk, J. W.; Plummer, E. W. Field-emission energy-distribution (FEED). Rev. Mod. Phys. 1973, 45, 487 548.CrossRefADSGoogle Scholar
  24. [24]
    Xu, N. S.; Chen, Y.; Deng, S. Z.; Chen, J.; Ma, X. C.; Wang, E. G. Vacuum gap dependence of field electron emission properties of large area multi-walled carbon nanotube films. J. Phys. D: Appl. Phys. 2001, 34, 1597–1601.CrossRefADSGoogle Scholar
  25. [25]
    He, J. H.; Yang, R.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces—Growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650–654.CrossRefGoogle Scholar
  26. [26]
    Zhang, Y. L.; Wu, X. C.; Tao, Y. R.; Mao, C. J.; Zhu, J. J. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays. Chem. Comm. 2008, 2683–2685.Google Scholar
  27. [27]
    Bai, X.; Wang, E. G.; Gao, P.; Wang, Z. L. Measuring the work function at a nanobelt tip and at a nanoparticle surface. Nano Lett. 2003, 3, 1147–1150.CrossRefADSGoogle Scholar
  28. [28]
    Xu, Z.; Bai, X. D.; Wang, E. G.; Wang, Z. L. Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 2005, 87, 163–106.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, and Key Laboratory of Mesoscopic Chemistry of Ministry of EducationNanjing UniversityNanjingChina

Personalised recommendations