Nano Research

, Volume 2, Issue 7, pp 535–542 | Cite as

Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface

  • Wei Xu
  • Mingdong Dong
  • Henkjan Gersen
  • Socorro Vázquez-Campos
  • Xavier Bouju
  • Erik Lægsgaard
  • Ivan Stensgaard
  • Mercedes Crego-Calama
  • David N. Reinhoudt
  • Trolle R. Linderoth
  • Flemming Besenbacher
Open Access
Research Article

Abstract

We present an interplay of high-resolution scanning tunneling microscopy imaging and the corresponding theoretical calculations based on elastic scattering quantum chemistry techniques of the adsorption of a gold-functionalized rosette assembly and its building blocks on a Au(111) surface with the goal of exploring how to fabricate functional 3-D molecular nanostructures on surfaces. The supramolecular rosette assembly stabilized by multiple hydrogen bonds has been sublimed onto the Au(111) surface under ultra-high vacuum conditions; the resulting surface nanostructures are distinctly different from those formed by the individual molecular building blocks of the rosette assembly, suggesting that the assembly itself can be transferred intact to the surface by in situ thermal sublimation. This unanticipated result will open up new perspectives for growth of complex 3-D supramolecular nanostructures at the vacuum-solid interface.

Keywords

Self-assembly surface nanostructures scanning tunneling microscopy supramolecular assembly hydrogen bonding 

References

  1. [1]
    Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C. Z.; Brune, H.; Gunter, P.; Kern, K. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 2002, 124, 7991–8000.CrossRefPubMedGoogle Scholar
  2. [2]
    Xu, W.; Kelly, R. E. A.; Otero, R.; Schöck, M.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Probing the hierarchy of thymine-thymine interactions in self-assembled structures by manipulation with scanning tunneling microscopy. Small 2007, 3, 2011–2014.CrossRefPubMedGoogle Scholar
  3. [3]
    Otero, R.; Lukas, M.; Kelly, R. E. A.; Xu, W.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 2008, 319, 312–315.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Chen, Q.; Richardson, N. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nat. Mater. 2003, 2, 324–328.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Kong, X. H.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C. H-bond switching mediated multiple flexibility in supramolecular host-guest architectures. J. Phys. Chem. C 2007, 111, 17382–17387.CrossRefGoogle Scholar
  7. [7]
    Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest, J. D.; Nanci, A.; Perepichka, D. F.; Rosei, F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J. Am. Chem. Soc. 2006, 128, 4212–4213.CrossRefPubMedGoogle Scholar
  8. [8]
    Wintjes, N.; Bonifazi, D.; Cheng, F.; Kiebele, A.; Stöhr, M.; Jung, T.; Spillmann, H.; Diederich, F. A supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 2007, 46, 4089–4092.CrossRefGoogle Scholar
  9. [9]
    Schiffrin, A.; Riemann, A.; Auwärter, W.; Pennec, Y.; Weber-Bargioni, A.; Cvetko, D.; Cossaro, A.; Morgante, A.; Barth, J. V. Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc. Natl. Acad. Sci. USA 2007, 104, 5279–5284.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Spillmann, H.; Kiebele, A.; Stohr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F. Y.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275–279.CrossRefGoogle Scholar
  11. [11]
    Kelly, R. E. A.; Xu, W.; Lukas, M.; Otero, R.; Mura, M.; Lee, Y.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. An investigation into the interactions between self-assembled adenine molecules and a Au(111) surface. Small 2008, 4, 1494–1500.CrossRefPubMedGoogle Scholar
  12. [12]
    Schnadt, J.; Rauls, E.; Xu, W.; Vang, R. T.; Knudsen, J.; Laegsgaard, E.; Li, Z.; Hammer, B.; Besenbacher, F. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 2008, 100, 046103.Google Scholar
  13. [13]
    Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.CrossRefPubMedADSGoogle Scholar
  14. [14]
    De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139–150.CrossRefPubMedGoogle Scholar
  15. [15]
    Wan, L. J. Fabricating and controlling molecular self-organization at solid surfaces: Studies by scanning tunneling microscopy. Acc. Chem. Res. 2006, 39, 334–342.CrossRefPubMedGoogle Scholar
  16. [16]
    Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497–525.CrossRefPubMedGoogle Scholar
  17. [17]
    Prins, L. J.; De Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Vázquez-Campos, S.; Péter, M.; Dong, M.; Xu, S.; Xu, W.; Gersen, H.; Linderoth, T. R.; Schönherr, H.; Besenbacher, F.; Crego-Calama, M.; Reinhoudt, D. N. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface. Langmuir 2007, 23, 10294–10298.CrossRefPubMedGoogle Scholar
  19. [19]
    Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Lægsgaard, E.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854–858.CrossRefPubMedGoogle Scholar
  20. [20]
    Xu, W.; Dong, M.; Vázquez-Campos, S.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Crego-Calama, M.; Reinhoudt, D. N.; Linderoth, T. R.; Besenbacher, F. Enhanced stability of large molecules vacuum-sublimated onto Au(111) achieved by incorporation of coordinated Au-atoms. J. Am. Chem. Soc. 2007, 129, 10624–10625.CrossRefPubMedGoogle Scholar
  21. [21]
    Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Influence of alkyl side chains on hydrogen-bonded molecular surface nanostructures. Small 2008, 4, 1620–1623.CrossRefPubMedGoogle Scholar
  22. [22]
    Mullen, T. J.; Dameron, A. A.; Weiss, P. S. Directed assembly and separation of self-assembled monolayers via electrochemical processing. J. Phys. Chem. B 2006, 110, 14410–14417.CrossRefPubMedGoogle Scholar
  23. [23]
    Monnell, J. D.; Stapleton, J. J.; Dirk, S. M.; Reinerth, W. A.; Tour, J. M.; Allara, D. L.; Weiss, P. S. Relative conductances of alkaneselenolate and alkanethiolate monolayers on Au{111}. J. Phys. Chem. B 2005, 109, 20343–20349.CrossRefPubMedGoogle Scholar
  24. [24]
    Kumar, A. S.; Ye, T.; Takami, T.; Yu, B. -C.; Flatt, A. K.; Tour, J. M.; Weiss, P. S. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 2008, 8, 1644–1648.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Bouju, X.; Joachim, C.; Girard, C.; Tang, H. Mechanics of (Xe)N atomic chains under STM manipulation. Phys. Rev. B 2001, 63, 085415.Google Scholar
  26. [26]
    Ample, F.; Joachim, C. A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 2006, 600, 3243–3251.CrossRefADSGoogle Scholar
  27. [27]
    Sautet, P.; Joachim, C. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev. B 1988, 38, 12238–12247.CrossRefADSGoogle Scholar
  28. [28]
    Pizzagali, L.; Joachim, C.; Bouju, X.; Girard, C. The resistance of a (Xe)n atomic wire. Europhys. Lett. 1997, 38, 97–102.CrossRefADSGoogle Scholar
  29. [29]
    Seto, C. T.; Whitesides, G. M. Synthesis, characterization, and thermodynamic analysis of a 1 + 1 self-assembling structure based on the cyanuric acid·cntdot·melamine lattice. J. Am. Chem. Soc. 1993, 115, 1330–1340.CrossRefGoogle Scholar
  30. [30]
    Prins, L. J.; Neuteboom, E. E.; Paraschiv, V.; Crego-Calama, M.; Timmerman, P.; Reinhoudt, D. N. Kinetic stabilities of double, tetra-, and hexarosette hydrogenbonded assemblies. J. Org. Chem. 2002, 67, 4808–4820.CrossRefPubMedGoogle Scholar
  31. [31]
    Staniec, P. A.; Perdigão, L. M. A.; Rogers, B. L.; Champness, N. R.; Beton P. H. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(111). J. Phys. Chem. C 2007, 111, 886–893.CrossRefGoogle Scholar
  32. [32]
    van Manen, H. J.; Paraschiv, V.; Garcia-Lopez, J. J.; Schonherr, H.; Zapotoczny, S.; Vancso, G. J.; Crego-Calama, M.; Reinhoudt, D. N. Hydrogen-bonded assemblies as a scaffold for metal-containing nanostructures: From zero to two dimensions. Nano Lett. 2004, 4, 441–446.CrossRefADSGoogle Scholar
  33. [33]
    Lægsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Wei Xu
    • 1
  • Mingdong Dong
    • 1
  • Henkjan Gersen
    • 1
  • Socorro Vázquez-Campos
    • 2
  • Xavier Bouju
    • 3
  • Erik Lægsgaard
    • 1
  • Ivan Stensgaard
    • 1
  • Mercedes Crego-Calama
    • 2
  • David N. Reinhoudt
    • 2
  • Trolle R. Linderoth
    • 1
  • Flemming Besenbacher
    • 1
  1. 1.Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Laboratory of Supramolecular Chemistry and Technology, Materials Science and Technology of Polymers, MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Nanoscience groupCEMES-CNRSToulouseFrance

Personalised recommendations