Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface

  • Research Article
  • Open Access
  • Published: 05 March 2010
  • volume 2, pages 535–542 (2009)
Download PDF

You have full access to this open access article

Nano Research Aims and scope Submit manuscript
Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface
Download PDF
  • Wei Xu1 nAff4,
  • Mingdong Dong1,
  • Henkjan Gersen1 nAff5,
  • Socorro Vázquez-Campos2,
  • Xavier Bouju3,
  • Erik Lægsgaard1,
  • Ivan Stensgaard1,
  • Mercedes Crego-Calama2 nAff6,
  • David N. Reinhoudt2,
  • Trolle R. Linderoth1 &
  • …
  • Flemming Besenbacher1 
  • 479 Accesses

  • 11 Citations

  • Explore all metrics

  • Cite this article

Abstract

We present an interplay of high-resolution scanning tunneling microscopy imaging and the corresponding theoretical calculations based on elastic scattering quantum chemistry techniques of the adsorption of a gold-functionalized rosette assembly and its building blocks on a Au(111) surface with the goal of exploring how to fabricate functional 3-D molecular nanostructures on surfaces. The supramolecular rosette assembly stabilized by multiple hydrogen bonds has been sublimed onto the Au(111) surface under ultra-high vacuum conditions; the resulting surface nanostructures are distinctly different from those formed by the individual molecular building blocks of the rosette assembly, suggesting that the assembly itself can be transferred intact to the surface by in situ thermal sublimation. This unanticipated result will open up new perspectives for growth of complex 3-D supramolecular nanostructures at the vacuum-solid interface.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C. Z.; Brune, H.; Gunter, P.; Kern, K. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 2002, 124, 7991–8000.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, W.; Kelly, R. E. A.; Otero, R.; Schöck, M.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Probing the hierarchy of thymine-thymine interactions in self-assembled structures by manipulation with scanning tunneling microscopy. Small 2007, 3, 2011–2014.

    Article  CAS  PubMed  Google Scholar 

  3. Otero, R.; Lukas, M.; Kelly, R. E. A.; Xu, W.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 2008, 319, 312–315.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Chen, Q.; Richardson, N. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nat. Mater. 2003, 2, 324–328.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Kong, X. H.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C. H-bond switching mediated multiple flexibility in supramolecular host-guest architectures. J. Phys. Chem. C 2007, 111, 17382–17387.

    Article  CAS  Google Scholar 

  7. Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest, J. D.; Nanci, A.; Perepichka, D. F.; Rosei, F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J. Am. Chem. Soc. 2006, 128, 4212–4213.

    Article  CAS  PubMed  Google Scholar 

  8. Wintjes, N.; Bonifazi, D.; Cheng, F.; Kiebele, A.; Stöhr, M.; Jung, T.; Spillmann, H.; Diederich, F. A supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 2007, 46, 4089–4092.

    Article  CAS  Google Scholar 

  9. Schiffrin, A.; Riemann, A.; Auwärter, W.; Pennec, Y.; Weber-Bargioni, A.; Cvetko, D.; Cossaro, A.; Morgante, A.; Barth, J. V. Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc. Natl. Acad. Sci. USA 2007, 104, 5279–5284.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Spillmann, H.; Kiebele, A.; Stohr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F. Y.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275–279.

    Article  CAS  Google Scholar 

  11. Kelly, R. E. A.; Xu, W.; Lukas, M.; Otero, R.; Mura, M.; Lee, Y.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. An investigation into the interactions between self-assembled adenine molecules and a Au(111) surface. Small 2008, 4, 1494–1500.

    Article  CAS  PubMed  Google Scholar 

  12. Schnadt, J.; Rauls, E.; Xu, W.; Vang, R. T.; Knudsen, J.; Laegsgaard, E.; Li, Z.; Hammer, B.; Besenbacher, F. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 2008, 100, 046103.

    Google Scholar 

  13. Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139–150.

    Article  PubMed  Google Scholar 

  15. Wan, L. J. Fabricating and controlling molecular self-organization at solid surfaces: Studies by scanning tunneling microscopy. Acc. Chem. Res. 2006, 39, 334–342.

    Article  CAS  PubMed  Google Scholar 

  16. Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497–525.

    Article  CAS  PubMed  Google Scholar 

  17. Prins, L. J.; De Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Vázquez-Campos, S.; Péter, M.; Dong, M.; Xu, S.; Xu, W.; Gersen, H.; Linderoth, T. R.; Schönherr, H.; Besenbacher, F.; Crego-Calama, M.; Reinhoudt, D. N. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface. Langmuir 2007, 23, 10294–10298.

    Article  PubMed  Google Scholar 

  19. Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Lægsgaard, E.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854–858.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, W.; Dong, M.; Vázquez-Campos, S.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Crego-Calama, M.; Reinhoudt, D. N.; Linderoth, T. R.; Besenbacher, F. Enhanced stability of large molecules vacuum-sublimated onto Au(111) achieved by incorporation of coordinated Au-atoms. J. Am. Chem. Soc. 2007, 129, 10624–10625.

    Article  CAS  PubMed  Google Scholar 

  21. Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Influence of alkyl side chains on hydrogen-bonded molecular surface nanostructures. Small 2008, 4, 1620–1623.

    Article  CAS  PubMed  Google Scholar 

  22. Mullen, T. J.; Dameron, A. A.; Weiss, P. S. Directed assembly and separation of self-assembled monolayers via electrochemical processing. J. Phys. Chem. B 2006, 110, 14410–14417.

    Article  CAS  PubMed  Google Scholar 

  23. Monnell, J. D.; Stapleton, J. J.; Dirk, S. M.; Reinerth, W. A.; Tour, J. M.; Allara, D. L.; Weiss, P. S. Relative conductances of alkaneselenolate and alkanethiolate monolayers on Au{111}. J. Phys. Chem. B 2005, 109, 20343–20349.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, A. S.; Ye, T.; Takami, T.; Yu, B. -C.; Flatt, A. K.; Tour, J. M.; Weiss, P. S. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 2008, 8, 1644–1648.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Bouju, X.; Joachim, C.; Girard, C.; Tang, H. Mechanics of (Xe)N atomic chains under STM manipulation. Phys. Rev. B 2001, 63, 085415.

    Google Scholar 

  26. Ample, F.; Joachim, C. A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 2006, 600, 3243–3251.

    Article  CAS  ADS  Google Scholar 

  27. Sautet, P.; Joachim, C. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev. B 1988, 38, 12238–12247.

    Article  ADS  Google Scholar 

  28. Pizzagali, L.; Joachim, C.; Bouju, X.; Girard, C. The resistance of a (Xe)n atomic wire. Europhys. Lett. 1997, 38, 97–102.

    Article  ADS  Google Scholar 

  29. Seto, C. T.; Whitesides, G. M. Synthesis, characterization, and thermodynamic analysis of a 1 + 1 self-assembling structure based on the cyanuric acid·cntdot·melamine lattice. J. Am. Chem. Soc. 1993, 115, 1330–1340.

    Article  CAS  Google Scholar 

  30. Prins, L. J.; Neuteboom, E. E.; Paraschiv, V.; Crego-Calama, M.; Timmerman, P.; Reinhoudt, D. N. Kinetic stabilities of double, tetra-, and hexarosette hydrogenbonded assemblies. J. Org. Chem. 2002, 67, 4808–4820.

    Article  CAS  PubMed  Google Scholar 

  31. Staniec, P. A.; Perdigão, L. M. A.; Rogers, B. L.; Champness, N. R.; Beton P. H. Honeycomb networks and chiral superstructures formed by cyanuric acid and melamine on Au(111). J. Phys. Chem. C 2007, 111, 886–893.

    Article  CAS  Google Scholar 

  32. van Manen, H. J.; Paraschiv, V.; Garcia-Lopez, J. J.; Schonherr, H.; Zapotoczny, S.; Vancso, G. J.; Crego-Calama, M.; Reinhoudt, D. N. Hydrogen-bonded assemblies as a scaffold for metal-containing nanostructures: From zero to two dimensions. Nano Lett. 2004, 4, 441–446.

    Article  ADS  Google Scholar 

  33. Lægsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542.

    Article  ADS  Google Scholar 

Download references

Author information

Author notes
  1. Wei Xu

    Present address: Departments of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA

  2. Henkjan Gersen

    Present address: Nanophysics and Soft Matter Group, Department of Physics, University of Bristol, Tyndall Avenue, BS8 1TL, Bristol, UK

  3. Mercedes Crego-Calama

    Present address: Holst Center (IMEC-NL), High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands

Authors and Affiliations

  1. Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000, Aarhus C, Denmark

    Wei Xu, Mingdong Dong, Henkjan Gersen, Erik Lægsgaard, Ivan Stensgaard, Trolle R. Linderoth & Flemming Besenbacher

  2. Laboratory of Supramolecular Chemistry and Technology, Materials Science and Technology of Polymers, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

    Socorro Vázquez-Campos, Mercedes Crego-Calama & David N. Reinhoudt

  3. Nanoscience group, CEMES-CNRS, 29 rue Jeanne Marvig, 31055, Toulouse, France

    Xavier Bouju

Authors
  1. Wei Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mingdong Dong
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Henkjan Gersen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Socorro Vázquez-Campos
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xavier Bouju
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Erik Lægsgaard
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Ivan Stensgaard
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Mercedes Crego-Calama
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. David N. Reinhoudt
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Trolle R. Linderoth
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Flemming Besenbacher
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Trolle R. Linderoth or Flemming Besenbacher.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Xu, W., Dong, M., Gersen, H. et al. Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface. Nano Res. 2, 535–542 (2009). https://doi.org/10.1007/s12274-009-9051-6

Download citation

  • Received: 01 April 2009

  • Revised: 01 May 2009

  • Accepted: 01 May 2009

  • Published: 05 March 2010

  • Issue Date: July 2009

  • DOI: https://doi.org/10.1007/s12274-009-9051-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Self-assembly
  • surface nanostructures
  • scanning tunneling microscopy
  • supramolecular assembly
  • hydrogen bonding

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature