Nano Research

, Volume 2, Issue 7, pp 517–525 | Cite as

Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin

  • Apraku David Donkor
  • Zhengding Su
  • Himadri S. Mandal
  • Xu Jin
  • Xiaowu Shirley Tang
Open Access
Research Article


Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery. We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes (SWNTs), which were previously prepared for drug delivery purposes, and explored their potential for detoxification in the bloodstream. Our investigations of the binding of SWNTs to a pore-forming toxin pyolysin show that SWNTs prevented toxin-induced pore formation in the cell membrane of human red blood cells. Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin. According to Raman spectroscopy data, human red blood cells, unlike HeLa cells, did not internalize oxidized SWNTs. Molecular modeling and circular dichroism measurements were used to predict the 3-D structure of pyolysin (domain 4) and its interaction with SWNTs. The tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin, a common construct in a large family of cholesterol-dependent cytolysins, shows high affinity for SWNTs.


Single-walled carbon nanotubes(SWNT) pore-forming toxin pyolysin hemolytic activity red blood cell protein-nanotube interaction detoxification 

Supplementary material

12274_2009_9049_MOESM1_ESM.pdf (777 kb)
Supplementary material, approximately 780 KB.


  1. [1]
    Mokhlesi, B.; Leiken, J. B.; Murray, P.; Corbridge, T. C. Adult toxicology in critical care Part I: General approach to the intoxicated patient. CHEST 2003, 123, 577–592.CrossRefPubMedGoogle Scholar
  2. [2]
    Leroux, J. C. Injectable nanocarriers for biodetoxification. Nat. Nanotechol. 2007, 2, 679–684.CrossRefADSGoogle Scholar
  3. [3]
    Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Heller, A. D.; Baik, S.; Eurell, E. T.; Strano, S. M. Singlewalled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 2005, 17, 2793–2799.CrossRefGoogle Scholar
  5. [5]
    Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. J. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850–6851.CrossRefGoogle Scholar
  6. [6]
    Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. P. Natl. Acad. Sci. USA 2006, 103, 3357–3362.CrossRefADSGoogle Scholar
  7. [7]
    van der Goot, F. G. Pore-Forming Toxins; Springer: New York, NY., 2001.Google Scholar
  8. [8]
    Billington, J. S.; Jost, B. H.; Cuevas, W. A.; Bright, K. R.; Songer, J. G. The Arcanobacterium (Actinomyces) pyogenes hemolysin, pyolysin, is a novel member of the thiol-activated cytolysin family. J. Bacteriol. 1997, 179, 6100–6106.PubMedGoogle Scholar
  9. [9]
    Ghafari, P.; St-Denis, C. H.; Power, M. E.; Jin, X.; Tsou, V.; Mandal, H. S.; Bols, N. C.; Tang, X. W. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat. Nanotechol. 2008, 3, 347–351.CrossRefADSGoogle Scholar
  10. [10]
    Li, Y. H.; Wang, S. G.; Luan, Z. K.; Ding, J.; Xu, C. L.; Wu, D. H. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 2003, 41, 1057–1062.CrossRefGoogle Scholar
  11. [11]
    Lang, S.; Palmer, M. Characterization of Streptococcus agalactiae CAMP factor as a pore forming toxin. J. Biol. Chem. 2003, 278, 38167–38173.CrossRefPubMedGoogle Scholar
  12. [12]
    Kam, N.W.S.; Dai, H. J. Single walled carbon nanotubes for transport and delivery of biological cargos. Physica Status Solid B 2006, 243, 3561–3566.CrossRefGoogle Scholar
  13. [13]
    Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J. siRNA delivery into human T cells and primary cells with carbon nanotube transporters. Angew. Chem. Int. Ed. 2007, 46, 2023–2027.CrossRefGoogle Scholar
  14. [14]
    Kam, N.W.S.; Liu, Z.; Dai, H. J. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006, 45, 577–581.CrossRefGoogle Scholar
  15. [15]
    Palmer M. The family of thiol-activated, cholesterol binding cytolysins. Toxicon 2001, 39, 1681–1689.CrossRefPubMedGoogle Scholar
  16. [16]
    Tweten, R. K. Cholesterol dependent cytolysins, a family of versatile pore forming toxins. Infect. Immun. 2005, 73, 6199–6209.CrossRefPubMedGoogle Scholar
  17. [17]
    Zorbas, V.; Smith, A. L.; Xie, H.; Ortiz-Acevedo, A.; Dalton, A. B.; Dieckmann, G. R.; Draper, R. K.; Baughman, R. H.; Musselman, I. H. Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J. Am. Chem. Soc. 2005, 127, 12323–12328.CrossRefPubMedGoogle Scholar
  18. [18]
    Su, Z. D.; Leung, T.; Honek, J. F. Conformational selectivity of peptides for single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 23623–23627.CrossRefPubMedGoogle Scholar
  19. [19]
    Su, Z. D.; Mui, K.; Daub, E.; Leung, T.; Honek, J. Single-walled carbon nanotube binding peptides: Probing tryptophan’s importance by unnatural amino acid substitution. J. Phys. Chem. B 2007, 111, 14411–14417.CrossRefPubMedGoogle Scholar
  20. [20]
    Wang, S. Q.; Humphreys, E. S.; Chung, S. Y.; Delduco, D. F.; Lustig, S. R.; Wang, H.; Parker, K. N.; Rizzo, N. W.; Subramoney, S.; Chiang, Y. M. Jagota, A. Peptides with selective affinity for carbon nanotubes. Nat. Mater. 2003, 2, 196–200.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Chen, S. M.; Shen, W. M.; Wu, G. Z.; Chen, D.; Jiang, M. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett. 2005, 402, 312–317.CrossRefADSGoogle Scholar
  22. [22]
    Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50–56.CrossRefPubMedGoogle Scholar
  23. [23]
    Billington, S. J.; Songer, J. G.; Jost, B. H. The variant undecapeptide sequence of the arcanobacterium pyogenes haemolysin, pyolysin, is required for full cytolytic activity. Microbiology, 2002, 148, 3947–3954.PubMedGoogle Scholar
  24. [24]
    Kam, N. W. S.; O’Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. P. Natl. Acad. Sci. USA 2005, 102, 11600–11605.CrossRefADSGoogle Scholar
  25. [25]
    Benga, Gh.; Porutiu, D.; Ghirn, I.; Kuchel, W. P.; Gallagher, H. C.; Cox, C. G. Scanning electron microscopy of red blood cells from eleven species of marsupial. Comparative Haematol. Intern. 1992, 2, 227–230.CrossRefGoogle Scholar
  26. [26]
    Lambert, C.; Leonard, N.; De Bolle, X.; Depiereux, E. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 2002, 18, 1250–1256.CrossRefPubMedGoogle Scholar
  27. [27]
    Dejoux, A.; Cieplax, P.; Hannick, N.; Moyna, G.; Dupradeau, F. Y. AmberFFC, a flexible program to convert AMBER and GLYCAM force fields for use with commercial molecular modeling packages. J. Mol. Model. 2001, 7, 422–432.Google Scholar
  28. [28]
    Thomsen, R.; Christensen, M. H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321.CrossRefPubMedGoogle Scholar
  29. [29]
    Xie, H.; Becraft, E. J.; Baughman, R. H.; Dalton, A. B.; Dieckmann, G. R. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J. Pept. Sci. 2008, 14, 139–151.CrossRefPubMedGoogle Scholar
  30. [30]
    Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. P. Natl. Acad. Sci. USA, 2006, 103, 18882–18886.CrossRefADSGoogle Scholar
  31. [31]
    Woodle, M. C. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug. Deliver. Rev. 1998, 32, 139–152.CrossRefGoogle Scholar
  32. [32]
    Lacerda, L.; Herrero, M. A.; Venner, K.; Bianco, A.; Prato, M.; Kostarelos, K. Carbon nanotube shape and individualization critical for renal excretion. Small 2008, 4, 1130–1132.CrossRefPubMedGoogle Scholar
  33. [33]
    Wang, H. F.; Wang, J.; Deng, X. Y.; Sun, H. F.; Shi, Z. J.; Gu, Z. N.; Liu, Y. F.; Zhao, Y. L. Biodistribution of single-walled carbon nanotubes in mice. J. Nanosci. Nanotechnol. 2004, 4, 1019–1024.CrossRefPubMedGoogle Scholar
  34. [34]
    Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechol. 2008, 3, 216–221.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Apraku David Donkor
    • 1
  • Zhengding Su
    • 1
  • Himadri S. Mandal
    • 1
  • Xu Jin
    • 1
  • Xiaowu Shirley Tang
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations