Nano Research

, Volume 2, Issue 6, pp 500–508 | Cite as

Proton-resistant quantum dots: Stability in gastrointestinal fluids and implications for oral delivery of nanoparticle agents

  • Aaron M. Mohs
  • Hongwei Duan
  • Brad A. Kairdolf
  • Andrew M. Smith
  • Shuming Nie
Open Access
Research Article

Abstract

Semiconductor quantum dots (QDs) have shown great promise as fluorescent probes for molecular, cellular and in vivo imaging. However, the fluorescence of traditional polymer-encapsulated QDs is often quenched by proton-induced etching in acidic environments. This is a major problem for applications of QDs in the gastrointestinal tract because the gastric (stomach) environment is strongly acidic (pH 1–2). Here we report the use of proton-resistant surface coatings to stabilize QD fluorescence under acidic conditions. Using both hyperbranched polyethylenimine (PEI) and its polyethylene glycol derivative (PEG-grafted PEI), we show that the fluorescence of core shell CdSe /CdS/ ZnS QDs is effectively protected from quenching in simulated gastric fluids. In comparison, amphiphilic lipid or polymer coatings provide no protection under similarly acidic conditions. The proton-resistant QDs are found to cause moderate membrane damage to cultured epithelial cells, but PEGylation (PEG grafting) can be used to reduce cellular toxicity and to improve nanoparticle stability.

Keywords

Nanoparticle quantum dot oral delivery gastrointestinal polyethylenimine (PEI) polyethylene glycol (PEG) 

References

  1. [1]
    Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotech. 2004, 22, 47–52.CrossRefGoogle Scholar
  2. [2]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.CrossRefPubMedGoogle Scholar
  4. [4]
    Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008, 60, 1226–1240.CrossRefPubMedGoogle Scholar
  5. [5]
    Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41–46.CrossRefPubMedGoogle Scholar
  6. [6]
    Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefPubMedGoogle Scholar
  7. [7]
    Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Smith, A. M.; Nie, S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J. Am. Chem. Soc. 2008, 130, 11278–11279.CrossRefPubMedGoogle Scholar
  9. [9]
    Kairdolf, B. A.; Smith, A. M.; Nie, S. One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. J. Am. Chem. Soc. 2008, 130, 12866–12867.CrossRefPubMedGoogle Scholar
  10. [10]
    Mancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. Oxidative quenching and degradation of polymer-encapsulated quantum dots: New insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc. 2008, 130, 10836–10837.CrossRefPubMedGoogle Scholar
  11. [11]
    Smith, A. M.; Duan, H. W.; Rhyner, M. N.; Ruan, G.; Nie, S. M. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys. 2006, 8, 3895–3903.CrossRefPubMedGoogle Scholar
  12. [12]
    Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.CrossRefPubMedGoogle Scholar
  13. [13]
    Fruehauf, J. P.; Meyskens, F. L. Jr. Reactive oxygen species: A breath of life or death. Clin. Cancer Res. 2007, 13, 789–794.CrossRefPubMedGoogle Scholar
  14. [14]
    Leopold, J. A.; Loscalzo, J. Oxidative enzymopathies and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1332–1340.CrossRefGoogle Scholar
  15. [15]
    Lindahl, A.; Ungell, A. L.; Knutson, L.; Lennernas, H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 1997, 14, 497–502.CrossRefPubMedGoogle Scholar
  16. [16]
    Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Yezhelyev, M. V.; Qi, L.; O’Regan, R. M.; Nie, S.; Gao, X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006–9012.CrossRefPubMedGoogle Scholar
  18. [18]
    Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 2001, 46, 27–43.CrossRefPubMedGoogle Scholar
  19. [19]
    Duan, H.; Nie, S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc. 2007, 129, 3333–3338.CrossRefPubMedGoogle Scholar
  20. [20]
    Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.CrossRefPubMedGoogle Scholar
  21. [21]
    Rae, C. S.; Khor, I. W.; Wang, Q.; Destito, G.; Gonzalez, M. J.; Singh, P.; Thomas, D. M.; Estrada, M. N.; Powell, E.; Finn, M. G.; Manchester, M. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 2005, 343, 224–235.CrossRefPubMedGoogle Scholar
  22. [22]
    Takagi, K.; Teshima, R.; Okunuki, H.; Sawada, J. Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biol. Pharm. Bull. 2003, 26, 969–973.CrossRefPubMedGoogle Scholar
  23. [23]
    El-Sayed, M.; Ginski, M.; Rhodes, C.; Ghandehari, H. Transepithelial transport of poly (amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release 2002, 81, 355–365.CrossRefPubMedGoogle Scholar
  24. [24]
    Sparreboom, A.; van Asperen, J.; Mayer, U.; Schinkel, A. H.; Smit, J. W.; Meijer, D. K. F.; Borst, P.; Nooijen, W. J.; Beijnen, J. H.; van Tellingen, O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 2031–2035.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Schellens, J. H. M.; Malingré, M. M.; Kruijtzer, C. M. F.; Bardelmeijer, H. A.; van Tellingen, O.; Schinkel, A. H.; Beijnen, J. H. Modulation of oral bioavailability of anticancer drugs: From mouse to man. Eur. J. Pharm. Sci. 2000, 12, 103–110.CrossRefPubMedGoogle Scholar
  26. [26]
    Goldberg, M.; Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2003, 2, 289–295.CrossRefPubMedGoogle Scholar
  27. [27]
    Woodley, J. F. Enzymatic barriers for GI peptide and protein delivery. Crit. Rev. Ther. Drug Carrier Syst. 1994, 11, 61–95.PubMedGoogle Scholar
  28. [28]
    Malingre, M. M.; Beijnen, J. H.; Schellens, J. H. Oral delivery of taxanes. Invest. New Drugs 2001, 19, 155–162.CrossRefPubMedGoogle Scholar
  29. [29]
    Bromberg, L. Intelligent polyelectrolytes and gels in oral drug delivery. Curr. Pharm. Biotechnol. 2003, 4, 339–349.CrossRefPubMedGoogle Scholar
  30. [30]
    De Jaeghere, F.; Allemann, E.; Kubel, F.; Galli, B.; Cozens, R.; Doelker, E.; Gurny, R. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: Effect of the particle size and nutritional state. J. Control. Release 2000, 68, 291–298.CrossRefPubMedGoogle Scholar
  31. [31]
    Li, M. G.; Lu, W. L.; Wang, J. C.; Zhang, X.; Zhang, H.; Wang, X. Q.; Wu, C. S.; Zhang, Q. Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate / methylmethacrylic acid) copolymer. J. Nanosci. Nanotechnol. 2006, 6, 2874–2886.CrossRefPubMedGoogle Scholar
  32. [32]
    Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D.; Neufeld, R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 2007, 8, 3054–3060.CrossRefPubMedGoogle Scholar
  33. [33]
    Ambudkar, S. V.; Dey, S.; Hrycyna, C. A.; Ramachandra, M.; Pastan, I.; Gottesman, M. M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361–398.CrossRefPubMedGoogle Scholar
  34. [34]
    Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58.CrossRefPubMedGoogle Scholar
  35. [35]
    Roy, K.; Mao, H. Q.; Huang, S. K.; Leong, K. W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 1999, 5, 387–391.CrossRefPubMedGoogle Scholar
  36. [36]
    Win, K. Y.; Feng, S. S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26, 2713–2722.CrossRefPubMedGoogle Scholar
  37. [37]
    Beier, R.; Gebert, A. Kinetics of particle uptake in the domes of Peyer’s patches. Am. J. Physiol. 1998, 275, G130–137.PubMedGoogle Scholar
  38. [38]
    Neutra, M. R.; Mantis, N. J.; Frey, A.; Giannasca, P. J. The composition and function of M cell apical membranes: Implications for microbial pathogenesis. Semin. Immunol. 1999, 11, 171–181.CrossRefPubMedGoogle Scholar
  39. [39]
    des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y. J.; Preat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006, 116, 1–27.CrossRefPubMedGoogle Scholar
  40. [40]
    Hillyer, J. F.; Albrecht, R. M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci. 2001, 90, 1927–1936.CrossRefPubMedGoogle Scholar
  41. [41]
    Behrens, I.; Pena, A. I. V.; Alonso, M. J.; Kissel, T. Comparative uptake studies of bioadhesive and nonbioadhesive nanoparticles in human intestinal cell lines and rats: The effect of mucus on particle adsorption and transport. Pharm. Res. 2002, 19, 1185–1193.CrossRefPubMedGoogle Scholar
  42. [42]
    Prego, C.; Fabre, M.; Torres, D.; Alonso, M. J. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm. Res. 2006, 23, 549–556.CrossRefPubMedGoogle Scholar
  43. [43]
    Sonavane, G.; Tomoda, K.; Sano, A.; Ohshima, H.; Terada, H.; Makino, K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B Biointerfaces 2008, 65, 1–10.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aaron M. Mohs
    • 1
  • Hongwei Duan
    • 1
  • Brad A. Kairdolf
    • 1
  • Andrew M. Smith
    • 1
  • Shuming Nie
    • 1
  1. 1.Departments of Biomedical Engineering and ChemistryEmory University and Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations