Nano Research

, Volume 2, Issue 6, pp 493–499 | Cite as

Self-assembly of luminescent twisted fibers based on achiral quinacridone derivatives

  • Yunfeng Zhao
  • Yan Fan
  • Xiaoyue Mu
  • Hongze Gao
  • Jia Wang
  • Jingying Zhang
  • Wensheng Yang
  • Lifeng Chi
  • Yue Wang
Open Access
Research Article

Abstract

It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances. Here we show that two achiral centrosymmetric quinacridone (QA) derivatives, N,N′-di(n-hexyl)-1, 3, 8, 10-tetramethylquinacridone (C6TMQA) and N,N′-di(n-decyl)-1, 3, 8, 10-tetramethylquinac ridone (C10TMQA), can be employed as building blocks to fabricate well-defined twisted nanostructures by controlling the solvent composition and concentration. Bowknot-like bundles with twisted fiber arms were prepared from C6TMQA, whilst uniform twisted fibers were generated from C10TMQA in ethanol/THF solution. Spectroscopic characterization and molecular simulation calculations revealed that the introduction of ethanol into the solution could induce a staggered aggregation of C6TMQA (or C10TMQA) molecules and the formation of twisted nanostructures. Such twisted materials generated from achiral organic functional molecules may be valuable in the design and fabrication of new materials for optoelectronic applications.

Keywords

Twisted fiber quinacridone self-assembly luminescence 

Supplementary material

12274_2009_9045_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.07 MB.

References

  1. [1]
    Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N. Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 2004, 33, 363–372.CrossRefPubMedGoogle Scholar
  3. [3]
    van der Jonkheijm, P.; Schoot, P.; J. Schenning, A. P. H.; Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 2006, 313, 80–83.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Amabilino, D. B.; Veciana, J. Supramolecular chiral functional materials. Top. Curr. Chem. 2006, 265, 252–302.Google Scholar
  5. [5]
    Palmer, L. C.; Velichko, Y. S.; de la Cruz, M. O.; Stupp, S. I. Supramolecular self-assembly codes for functional structures. Phil. Trans. R. Soc. A 2007, 365, 1417–1433.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Niu, Z.; Bruckman, M. A.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.CrossRefGoogle Scholar
  7. [7]
    Fuhrhopa, J. -H.; Helfrich, W. Fluid and solid fibers made of lipid molecular bilayers. Chem. Rev. 1993, 93, 1565–1582.CrossRefGoogle Scholar
  8. [8]
    Thalacker, C.; Würther, F. Chiral perylene bisimide-melamine assemblies: Hydrogen bond-directed growth of helically stacked dyes with chiroptical properties. Adv. Funct. Mater. 2002, 12, 209–218.CrossRefGoogle Scholar
  9. [9]
    Brizard, A.; Oda, R.; Huc, I. Chirality effects in self-assembled fibrillar networks. Top. Curr. Chem. 2005, 256, 167–218.Google Scholar
  10. [10]
    Bae, J.; Choi, J. -H.; Yoo, Y. -S.; Oh, N. -K.; Kim, B. -S.; Lee, M. Helical nanofibers from aqueous self-assembly of an oligo(p-phenylene)-based molecular dumbbell. J. Am. Chem. Soc. 2005, 127, 9668–9669.CrossRefPubMedGoogle Scholar
  11. [11]
    Ajayaghosh, A.; Praveen, V. K. pi-Organogels of self-assembled p-phenylenevinylenes: Soft materials with distinct size, shape, and functions. Acc. Chem. Res. 2007, 40, 644–656.CrossRefPubMedGoogle Scholar
  12. [12]
    Goh, M.; Kyotani, M.; Akagi, K. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field. J. Am. Chem. Soc. 2007, 129, 8519–8527.CrossRefPubMedGoogle Scholar
  13. [13]
    Maeda, K.; Yashima, E. Dynamic helical structures: Detection and amplification of chirality. Top. Curr. Chem. 2006, 265, 47–88.CrossRefGoogle Scholar
  14. [14]
    Palmans, A. R. A.; Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 2007, 46, 8948–8968.CrossRefGoogle Scholar
  15. [15]
    Fejer, S. N.; Wales, D. J. Helix self-assembly from anisotropic molecules. Phys. Rev. Lett. 2007, 99, 086106.Google Scholar
  16. [16]
    Yang, W.; Chai, X.; Chi, L.; Liu, X.; Cao, Y.; Lu, R.; Jiang, Y.; Tang, X.; Fuchs, H.; Li, T. From achiral molecular components to chiral supermolecules and supercoil self-assembly. Chem, Eur. J. 1999, 5, 1144–1149.CrossRefGoogle Scholar
  17. [17]
    Takeuchi, M.; Tanaka, S.; Shinkai, S. On the influence of porphyrin π-π stacking on supramolecular chirality created in the porphyrin-based twisted tape structure. Chem. Commun. 2005, 5539–5541.Google Scholar
  18. [18]
    Yuan, J.; Liu, M. Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl)naphtha[2,3]im idazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125, 5051–5056.CrossRefPubMedGoogle Scholar
  19. [19]
    Huang, X.; Li, C.; Jiang, S.; Wang, X.; Zhang, B.; Liu, M. Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322–1323.CrossRefPubMedGoogle Scholar
  20. [20]
    Simon, F. -X.; Khelfallah, N. S. Formation of helical mesopores in organic polymer matrices. J. Am. Chem. Soc. 2007, 129, 3788–3789.CrossRefPubMedGoogle Scholar
  21. [21]
    Sly, J.; Kasák, P.; Gomar-Nadal, E.; Rovira, C.; Górriz, L.; Thordarson, P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chiral molecular tapes from novel tetra(thiafulvalenecrown-ether)-substituted phthalocyanine building blocks. Chem. Commun. 2005, 1255–1257.Google Scholar
  22. [22]
    Wang, M.; Yang, Y. -L.; Deng, K.; Wang, C. Uncoiling process of helical molecular fibrillar structures studied by AFM. J. Phys. Chem. C 2007, 111, 6194–6198.CrossRefGoogle Scholar
  23. [23]
    Hiramoto, M.; Kawase, S.; Yokoyama, M. Photoinduced hole injection multiplication in p-type quinacridone pigment films. Jpn. J. Appl. Phys. 1996, 35, L349–L351.CrossRefADSGoogle Scholar
  24. [24]
    Shichiri, T.; Suezaki, M.; Inoue, T. Three-layer organic solar cell. Chem. Lett. 1992, 21, 1717–1720.CrossRefGoogle Scholar
  25. [25]
    Shi, J.; Tang, C. W. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1997, 70, 1665–1667.CrossRefADSGoogle Scholar
  26. [26]
    Gross, E. M.; Anderson, J. D.; Slaterbeck, A. F.; Thayumanavan, S.; Barlow, S.; Zhang, Y.; Marder, S. R.; Hall, H. K.; Nabor, M. F.; Wang, J. F. et al. Electrogenerated chemiluminescence from derivatives of aluminum quinolate and quinacridones: Cross-reactions with triarylamines lead to singlet emission through triplet triplet annihilation pathways. J. Am. Chem. Soc. 2000, 122, 4972–4970.CrossRefGoogle Scholar
  27. [27]
    Lincke, G. A review of thirty years of research on quinacridone. X-ray crystallography and crystal engineering. Dyes Pigm. 2000, 44, 101–122.CrossRefGoogle Scholar
  28. [28]
    Ye, K. Q.; Wang, J.; Sun, H.; Liu, Y.; Mu, Z. C.; Li, F.; Jiang, S. M.; Zhang, J. Y.; Zhang, H. X.; Wang, Y. et al. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives. J. Phys. Chem. B 2005, 109, 8008–8016.CrossRefPubMedGoogle Scholar
  29. [29]
    Paulus, E. F.; Leusen, F. J. J.; Schmidt, M. U. Crystal structures of quinacridones. CrystEngComm, 2007, 9, 131–143.CrossRefGoogle Scholar
  30. [30]
    Keller, U.; Müllen, K.; De Feyter, S.; De Schryver, F. C. Hydrogen-bonding and phase-forming behavior of a soluble quinacridone. Adv. Mater. 1996, 8, 490–493.CrossRefGoogle Scholar
  31. [31]
    Qiu, D. L.; Ye, K. Q.; Wang, Y.; Zou, B.; Zhang, X.; Lei, S. B.; Wan, L. J. In situ scanning tunneling microscopic investigation of the two-dimensional ordering of different alkyl chain-substituted quinacridone derivatives at highly oriented pyrolytic graphite/solution interface. Langmuir 2003, 19, 678–681.CrossRefGoogle Scholar
  32. [32]
    Lin, F.; Zhong, D. Y.; Chi, L. F.; Ye, K. Q.; Wang, Y.; Fuchs, H. Temperature-tuned organic monolayer growth: N,N-di(n-butyl)quinacridone on Ag(110). Phys. Rev. B 2006, 73, 235420.Google Scholar
  33. [33]
    Trixler, F.; Markert, T.; Lackinger, M.; Jamitzky, F.; Heckl, W. M. Supramolecular self-assembly initiated by solid solid wetting. Chem. Eur. J. 2007, 13, 7785–7790.CrossRefGoogle Scholar
  34. [34]
    Wang, J.; Zhao, Y. F.; Zhang, J. H.; Zhang, J. Y.; Yang, B.; Wang, Y.; Zhang, D. K.; You, H.; Ma, D. G. Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives. J. Phys. Chem. C 2007, 111, 9177–9183.CrossRefGoogle Scholar
  35. [35]
    Smallwood, I. M. Handbook of Organic Solvent Properties; Arnold: London, 1996; p. xvii, p. 65, and p.217.Google Scholar
  36. [36]
    Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q. Dynamic π-π stacked molecular assemblies emit from green to red colors. Nano Lett. 2003, 3, 455–458.CrossRefADSGoogle Scholar
  37. [37]
    Cornil, J.; dos Santos, D. A.; Beljonne, D.; Shuai, Z.; Brédas, J. L. In Semiconducting Polymers; Hadziioannou, G.; van Hutten, P. F., Eds.; Wiley-VCH: Weinheim, 2000; pp. 88–114.Google Scholar
  38. [38]
    Horn, D.; Gieger, J. Organic nanoparticles in the aqueous phase Theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40, 4330–4361.CrossRefGoogle Scholar
  39. [39]
    Hilfiker, R. Polymorphism in the Pharmaceutical Industry; Wiley-VCH: Weinheim, 2006; p.47.Google Scholar
  40. [40]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03, Revision C.02. Gaussian, Inc.: Pittsburgh, PA, 2003.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yunfeng Zhao
    • 1
  • Yan Fan
    • 1
  • Xiaoyue Mu
    • 1
  • Hongze Gao
    • 1
  • Jia Wang
    • 1
  • Jingying Zhang
    • 1
  • Wensheng Yang
    • 1
  • Lifeng Chi
    • 2
  • Yue Wang
    • 1
  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunChina
  2. 2.Physikalisches Institut and Center for Nanotechnology (CeNTech)Universität MünsterMünsterGermany

Personalised recommendations