Nano Research

, Volume 2, Issue 6, pp 448–461 | Cite as

Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring

  • M. -Carmen Estévez
  • Meghan B. O’Donoghue
  • Xiaolan Chen
  • Weihong Tan
Open Access
Research Article

Abstract

Early and accurate diagnosis and treatment of cancer depend on rapid, sensitive, and selective detection of tumor cells. Current diagnosis of cancers, especially leukemia, relies on histology and flow cytometry using single dye-labeled antibodies. However, this combination may not lead to high signal output, which can hinder detection, especially when the probes have relatively weak affinities or when the receptor is expressed in a low concentration on the target cell surface. To solve these problems, we have developed a novel method for sensitive and rapid detection of cancer cells using dye-doped silica nanoparticles (NPs) which increases detection sensitivity in flow cytometry analyses between 10- and 100-fold compared to standard methods. Our NPs are ∼60 nm in size and can encapsulate thousands of individual dye molecules within their matrix. We have extensively investigated surface modification strategies in order to make the NPs suitable for selective detection of cancer cells using flow cytometry. The NPs are functionalized with polyethylene glycol (PEG) to prevent nonspecific interactions and with neutravidin to allow universal binding with biotinylated molecules. By virtue of their reliable and selective detection of target cancer cells, these NPs have demonstrated their promising usefulness in conventional flow cytometry. Moreover, they have shown low background signal, high signal enhancement, and efficient functionalization, either with antibody- or aptamer-targeting moieties.

Keywords

Silica nanoparticle flow cytometry aptamer cell detection polyethylene glycol fluorophore 

Supplementary material

12274_2009_9041_MOESM1_ESM.pdf (365 kb)
Supplementary material, approximately 368 KB.

References

  1. [1]
    Prince, H. E.; Arens, L.; Kleinman, S. H. CD4 and CD8 subsets defined by dual-color cytofluorometry which distinguish symptomatic from asymptomatic blood donors seropositive for human immunodeficiency virus. Diagn. Clin. Immunol. 1987, 5, 188–193.PubMedGoogle Scholar
  2. [2]
    Craig, F. E. Flow cytometric evaluation of B-cell lymphoid neoplasms. Clin. Lab. Med. 2007, 27, 487–512.CrossRefPubMedGoogle Scholar
  3. [3]
    Donnenberg, A. D.; Donnenberg, V. S. Rare-event analysis in flow cytometry. Clin. Lab. Med. 2007, 27, 627–652.CrossRefPubMedGoogle Scholar
  4. [4]
    Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 2001, 40, 4128–4158.CrossRefGoogle Scholar
  5. [5]
    Wang, L.; Wang, K.; Santra, S.; Zhao, X.; Hilliard, L. R.; Smith, J. E.; Wu, Y.; Tan, W. Watching silica nanoparticles glow in the biological world. Anal. Chem. 2006, 78, 646–654.CrossRefGoogle Scholar
  6. [6]
    Holm, B. A.; Bergey, E. J.; De T; Rodman, D. J.; Kapoor, R.; Levy, L.; Friend, C. S.; Prasad, P. N. Nanotechnology in biomedical applications. Mol. Cryst. Liq. Cryst. 2002, 374, 589–598.Google Scholar
  7. [7]
    He, X.; Duan, J.; Wang, K.; Tan, W.; Lin, X.; He, C. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J. Nanosci. Nanotechnol. 2004, 4, 585–589.CrossRefPubMedGoogle Scholar
  8. [8]
    Herr, J. K.; Smith, J. E.; Medley, C. D.; Shangguan, D.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 2006, 78, 2918–2924.CrossRefPubMedGoogle Scholar
  9. [9]
    Zhao, X.; Hilliard, L. R.; Mechery, S. J.; Wang, Y.; Bagwe, R. P.; Jin, S.; Tan, W. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 15027–15032.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. 2006, 103, 11838–11843.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Tang, Z.; Shangguan, D.; Wang, K.; Shi, H.; Sefah, K.; Mallikaratchy, P.; Chen, H. W.; Li, Y.; Tan, W. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 2007, 79, 4900–4907.CrossRefPubMedGoogle Scholar
  12. [12]
    Chattopadhyay, P. K.; Price, D. A.; Harper, T. F.; Betts, M. R.; Yu, J.; Gostick, E.; Perfetto, S. P.; Goepfert, P.; Koup, R. A.; De Rosa, S. C.; Bruchez, M. P.; Roederer, M. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med. 2006, 12, 972–977.CrossRefPubMedGoogle Scholar
  13. [13]
    Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62–69.CrossRefGoogle Scholar
  14. [14]
    Bagwe, R. P.; Zhao, X.; Tan, W. Bioconjugated luminescent nanoparticles for biological applications. J. Disper. Sci. Technol. 2003, 24, 453–464.CrossRefGoogle Scholar
  15. [15]
    Bagwe, R. P.; Hilliard, L. R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362.CrossRefPubMedGoogle Scholar
  16. [16]
    Hilliard, L. R.; Zhao, X.; Tan, W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal. Chim. Acta 2002, 470, 51–56.CrossRefGoogle Scholar
  17. [17]
    Xu, H.; Yan, F.; Monson, E. E.; Kopelman, R. Room-temperature preparation and characterization of poly(ethylene glycol)-coated silica nanoparticles for biomedical applications. J. Biomed. Mater. Res. 2003, 66A, 870–879.CrossRefGoogle Scholar
  18. [18]
    Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Shuming, N. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefPubMedGoogle Scholar
  19. [19]
    Liu, Y.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L. Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal. Chem. 2007, 79, 2221–2229.CrossRefPubMedGoogle Scholar
  20. [20]
    van Blaaderen, A.; Vrij, A. Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 1992, 8, 2921–2931.CrossRefGoogle Scholar
  21. [21]
    Wang, L.; Tan, W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett. 2006, 6, 84–88.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Santra, S.; Wang, K.; Tapec, R.; Tan, W. Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt. 2001, 6, 160–166.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Brussaard, C. P. D.; Marie, D.; Bratbak, G. Flow cytometric detection of viruses. J. Virol. Methods 2000, 85, 175–182.CrossRefPubMedGoogle Scholar
  24. [24]
    Shangguan, D.; Cao, Z. C.; Li, Y.; Tan, W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin. Chem. 2007, 53, 1153–1155.CrossRefPubMedGoogle Scholar
  25. [25]
    Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 2008, 7, 2133–2139.CrossRefPubMedGoogle Scholar
  26. [26]
    Xiao, Z.; Shangguan, D.; Cao, Z.; Fang, X.; Tan, W. Cellspecific internalization study of an aptamer from whole cell selection. Chem. Eur. J. 2008, 14, 1769–1775.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. -Carmen Estévez
    • 1
  • Meghan B. O’Donoghue
    • 1
  • Xiaolan Chen
    • 1
  • Weihong Tan
    • 1
  1. 1.Center for Research at the Bio/Nano Interface, Departments of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center and UF Genetics Institute, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations