Nano Research

, Volume 2, Issue 5, pp 406–415 | Cite as

PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles

Open Access
Research Article


Bimetallic PtAu heteronanostructures have been synthesized from Pt-on-Au nanoparticles, which were made from platinum acetylacetonate and gold nanoparticles. Using the Pt-on-Au nanoparticles as precursors, Ptsurface rich PtAu bimetallic heteronanostructures can be produced through controlled thermal treatments, as confirmed by field emission high-resolution transmission electron microscopy (HR-TEM) and elemental mapping using a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM). Oxidation of formic acid was used as a model reaction to demonstrate the effects of varying composition and surface structure on the catalytic performance of PtAu bimetallic nanostructures. Cyclic voltammetry (CV) showed that these carbon-supported PtAu heteronanostructures were much more active than platinum in catalyzing the oxidation of formic acid, judging by the mass current density. The results showed that postsynthesis modification can be a very useful approach to the control of composition distributions in alloy nanostructures.


Nanostructure alloy platinum gold formic acid oxidation electrocatalyst polymer electrolyte membrane fuel cell (PEMFC) 

Supplementary material

12274_2009_9040_MOESM1_ESM.pdf (289 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Zhang, J. L.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Ptbimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation. J. Phys. Chem. C 2007, 111, 19126–19133.CrossRefGoogle Scholar
  6. [6]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.CrossRefGoogle Scholar
  8. [8]
    Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefPubMedGoogle Scholar
  9. [9]
    Rodriguez, J. A.; Goodman, D. W. The nature of the metal metal bond in bimetallic surfaces. Science 1992, 257, 897–903.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pttransition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.CrossRefPubMedGoogle Scholar
  11. [11]
    Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh Pd and Pt Pd core-shell nanoparticles. Science 2008, 322, 932–934.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 2007, 129, 12624–12625.CrossRefPubMedGoogle Scholar
  13. [13]
    Teng, X. W.; Black, D.; Watkins, N. J.; Gao, Y. L.; Yang, H. Platinum maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261–264.CrossRefADSGoogle Scholar
  14. [14]
    Teng, X. W.; Yang, H. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles. Nanotechnology 2005, 16, S554–S561.CrossRefADSGoogle Scholar
  15. [15]
    Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth Heinemann: Oxford, 2000.Google Scholar
  16. [16]
    Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinummonolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Edit. 2005, 44, 2132–2135.CrossRefGoogle Scholar
  17. [17]
    Adzic, R. R.; Zhang, J. L.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262.CrossRefGoogle Scholar
  18. [18]
    Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X. D.; Villegas, I.; Weaver, M. J. Electrooxidation mechanisms of methanol and formic-acid on Pt Ru alloy surfaces. Electrochim. Acta 1995, 40, 91–98.CrossRefGoogle Scholar
  19. [19]
    Rice, C.; Ha, R. I.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.CrossRefGoogle Scholar
  20. [20]
    Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. B. Kinetics and mechanism of the electrooxidation of formic acid Spectroelectrochemical studies in a flow cell. Angew. Chem. Int. Edit. 2006, 45, 981–985.CrossRefGoogle Scholar
  21. [21]
    Lovic, J. D.; Tripkovic, A. V.; Gojkovic, S. L. J.; Popovic, K. D.; Tripkovic, D. V.; Olszewski, P.; Kowal, A. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem. 2005, 581, 294–302.CrossRefGoogle Scholar
  22. [22]
    Zhu, Y. M.; Ha, S. Y.; Masel, R. I. High power density direct formic acid fuel cells. J. Power Sources 2004, 130, 8–14.CrossRefGoogle Scholar
  23. [23]
    Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. Catalysts for direct formic acid fuel cells. J. Power Sources 2003, 115, 229–235.CrossRefGoogle Scholar
  24. [24]
    Jeong, K. J.; Miesse, C. A.; Choi, J. H.; Lee, J.; Han, J.; Yoon, S. P.; Nam, S. W.; Lim, T. H.; Lee, T. G. Fuel crossover in direct formic acid fuel cells. J. Power Sources 2007, 168, 119–125.CrossRefGoogle Scholar
  25. [25]
    Choi, J. H.; Jeong, K. J.; Dong, Y.; Han, J.; Lim, T. H.; Lee, J. S.; Sung, Y. E. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 2006, 163, 71–75.CrossRefGoogle Scholar
  26. [26]
    Capon, A.; Parsons, R. Oxidation of formic-acid at noblemetal electrodes: Part 3. Intermediates and mechanism on platinum-electrodes. J. Electroanal. Chem. 1973, 45, 205–231.CrossRefGoogle Scholar
  27. [27]
    Matsumoto, F.; Roychowdhury, C.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J. Electrochem. Soc. 2008, 155, B148–B154.CrossRefGoogle Scholar
  28. [28]
    Alden, L. R.; Han, D. K.; Matsumoto, F.; Abruna, H. D.; DiSalvo, F. J. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid. Chem. Mater. 2006, 18, 5591–5596.CrossRefGoogle Scholar
  29. [29]
    Roychowdhury, C.; Matsumoto, F.; Zeldovich, V. B.; Warren, S. C.; Mutolo, P. F.; Ballesteros, M.; Wiesner, U.; Abruna, H. D.; DiSalvo, F. J. Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol. Chem. Mater. 2006, 18, 3365–3372.CrossRefGoogle Scholar
  30. [30]
    Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.CrossRefPubMedGoogle Scholar
  31. [31]
    Greeley, J.; Norskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis Calculations and concepts. Adv. Catal. 2000, 45, 71–129.CrossRefGoogle Scholar
  33. [33]
    Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A-Chem. 1997, 115, 421–429.CrossRefGoogle Scholar
  34. [34]
    Lee, J. K.; Lee, J.; Han, J.; Lim, T. H.; Sung, Y. E.; Tak, Y. Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim. Acta 2008, 53, 3474–3478.CrossRefGoogle Scholar
  35. [35]
    Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.Google Scholar
  36. [36]
    Kim, J.; Jung, C.; Rhee, C. K.; Lim, T. H. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 2007, 23, 10831–10836.CrossRefPubMedGoogle Scholar
  37. [37]
    Duan, H. W.; Nie, S. M. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412–2413.CrossRefPubMedGoogle Scholar
  38. [38]
    Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802.Google Scholar
  39. [39]
    Bauer, E.; Vandermerwe, J. H. Structure and growth of crystalline superlattices From monolayer to superlattice. Phys. Rev. B 1986, 33, 3657–3671.CrossRefADSGoogle Scholar
  40. [40]
    Porter, D. A.; Easterling, K. E. Phase Transformation in Metals and Alloys; Chapman & Hall: London, 1992.Google Scholar
  41. [41]
    Chambers, S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 2000, 39, 105–180.CrossRefADSGoogle Scholar
  42. [42]
    Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.CrossRefPubMedGoogle Scholar
  43. [43]
    Hu, M.; Chen, J. Y.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X. D.; Marquez, M.; Xia, Y. N. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084–1094.CrossRefPubMedGoogle Scholar
  44. [44]
    Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.Google Scholar
  45. [45]
    Vegard, L.; Dale, H. Untersuchungen ueber Mischkristalle und Legierungen. Zeits. Krist. 1928, 67, 148–162.Google Scholar
  46. [46]
    Peng, Z. M.; Yang, H. Ag Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 2008, 181, 1546–1551.CrossRefADSGoogle Scholar
  47. [47]
    Xu, J. B.; Zhao, T. S.; Liang, Z. X. Synthesis of active platinum silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112, 17362–17367.CrossRefGoogle Scholar
  48. [48]
    Adhikari, H.; Marshall, A. F.; Goldthorpe, I. A.; Chidsey, C. E. D.; McIntyre, P. C. Metastability of Au Ge liquid nanocatalysts: Ge vapor liquid solid nanowire growth far below the bulk eutectic temperature. ACS Nano 2007, 1, 415–422.CrossRefPubMedGoogle Scholar
  49. [49]
    Luo, J.; Wang, L. Y.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z. C.; Wanjana, B. N.; Lim, I. S.; Zhong, C. J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv. Mater. 2008, 20, 4342–4347.CrossRefGoogle Scholar
  50. [50]
    Zhao, D.; Xu, B. Q. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts. Phys. Chem. Chem. Phys. 2006, 8, 5106–5114.CrossRefPubMedGoogle Scholar
  51. [51]
    Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393–13398.CrossRefPubMedGoogle Scholar
  52. [52]
    Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 2006, 110, 12480–12484.CrossRefPubMedGoogle Scholar
  53. [53]
    Jiang, J.; Kucernak, A. Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. J. Electroanal. Chem. 2002, 520, 64–70.CrossRefGoogle Scholar
  54. [54]
    Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.Google Scholar
  55. [55]
    Neurock, M.; Janik, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 2008, 140, 363–378.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations