Nano Research

, Volume 2, Issue 5, pp 373–379 | Cite as

Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions

  • Albert G. Nasibulin
  • Simas Rackauskas
  • Hua Jiang
  • Ying Tian
  • Prasantha Reddy Mudimela
  • Sergey D. Shandakov
  • Larisa I. Nasibulina
  • Sainio Jani
  • Esko I. Kauppinen
Open Access
Research Article

Abstract

We propose a simple method for the efficient and rapid synthesis of one-dimensional hematite (α-Fe2O3) nanostructures based on electrical resistive heating of iron wire under ambient conditions. Typically, 1–5 μm long α-Fe2O3 nanowires were synthesized on a time scale of seconds at temperatures of around 700 ° ⊂. The morphology, structure, and mechanism of formation of the nanowires were studied by scanning and transmission electron microscopies, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman techniques. A nanowire growth mechanism based on diffusion of iron ions to the surface through grain boundaries and to the growing wire tip through stacking fault defects and due to surface diffusion is proposed.

Keywords

Fe2O3 hematite mechanism nanowire synthesis Address 

Supplementary material

12274_2009_9036_MOESM1_ESM.pdf (870 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.CrossRefGoogle Scholar
  2. [2]
    Lu, J. G.; Chang, P.; Fan, Z. Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng. R 2006, 52, 49.CrossRefGoogle Scholar
  3. [3]
    Fang, X.; Zhang, L. One-dimensional ZnS nanomaterials and nanostructures. J. Mater. Sci. Technol. 2006, 22, 721.MathSciNetGoogle Scholar
  4. [4]
    Law, M.; Goldberger, J.; Yang, P. Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 2004, 34, 83–122.CrossRefADSGoogle Scholar
  5. [5]
    Kolasinski, K. W. Current opinion in solid state and materials. Science 2006, 10, 182.Google Scholar
  6. [6]
    Cao, G.; Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interfac. Sci. 2008, 136, 45–64.CrossRefGoogle Scholar
  7. [7]
    Satyanarayana, V. N. T.; Kuchibhatla, A. S.; Karakoti, D. B.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–691.CrossRefGoogle Scholar
  8. [8]
    Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: Weinheim, 1996.Google Scholar
  9. [9]
    Khedr, M. H.; Bahgat, M.; Nasr, M. I.; Sedeek, E. K. CO2 decomposition over freshly reduced nanocrystalline Fe2O3. Colloid. Surfaces A: Physicochem. Eng. Aspects 2007, 302, 517–524.CrossRefGoogle Scholar
  10. [10]
    Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. alpha-Fe2O3 nanotubes in gas sensor and lithium-lon battery applications. Adv. Mater. 2005, 17, 582–586.CrossRefGoogle Scholar
  11. [11]
    Brown, A. S. C.; Hargreaves, J. S. J.; Rijniersce, B. A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. Cat. Lett. 1998, 53, 7–13CrossRefGoogle Scholar
  12. [12]
    Khare, N.; Eggleston, C. M.; Lovelace, D. M.; Boese, S. W. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces. J. Colloid Interface Sci. 2006, 303, 404–414.CrossRefPubMedGoogle Scholar
  13. [13]
    Srivastava, H.; Tiwari, P.; Srivastava, A. K; Nandedkar, R. V. Growth and characterization of alpha-Fe2O3 nanowires. J. Appl. Phys. 2007, 102, 054303.Google Scholar
  14. [14]
    Dong, W. T.; Zhu, C. S. Use of ethylene oxide in the sol gel synthesis of alpha-Fe2O3 nanoparticles from Fe(III) salts. J. Mater. Chem. 2002, 12, 1676–1683.CrossRefGoogle Scholar
  15. [15]
    Li, P.; Miser, D. E.; Rabiei, S.; Yadav, R. T.; Hajaligol, M. R. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B Env. 2003, 43, 151 162.Google Scholar
  16. [16]
    Chueh, Y. -L.; Lai, M. -W.; Liang, J. -Q.; Chou, L. -J.; Wang Z. L. Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 2006, 16, 2243–2251.CrossRefGoogle Scholar
  17. [17]
    Zhao, Y. M.; Li, Y. -H.; Ma, R. Z.; Roe, M. J.; McCartney, D. G.; Zhu, Y. Q. Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2006, 2, 422–427.CrossRefPubMedGoogle Scholar
  18. [18]
    Qin, F.; Magtoto, N. P.; Garza, M.; Kelber, J. A. Oxide film growth on Fe(111) and scanning tunneling microscopy induced high electric field stress in Fe2O3/Fe(111). Thin Solid Films 2003, 444, 179–188.CrossRefADSGoogle Scholar
  19. [19]
    Han, Q.; Xu, Y. Y.; Fu, Y. Y.; Zhang, H.; Wang, R. M.; Wang, T. M.; Chen, Z. Y. Defects and growing mechanisms of α-Fe2O3 nanowires. Chem. Phys. Lett. 2006, 431, 100–103.CrossRefADSGoogle Scholar
  20. [20]
    Fu, Y. Y.; Wang, R. M.; Xu, J.; Chen, J.; Yan, Y.; Narlikar, A. V. Zhang, H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys.Lett. 2003, 379, 373–379.CrossRefADSGoogle Scholar
  21. [21]
    Wen, X.; Wang, S.; Ding, Y.; Wang, Z. L.; Yang, S. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 2005, 109, 215–220.CrossRefPubMedGoogle Scholar
  22. [22]
    Takagi, R. Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Japan 1957, 12, 1212–1218.CrossRefADSGoogle Scholar
  23. [23]
    Mozetic, M.; Cvelbar, U.; Sunkara, M. K.; Vaddiraju, S. A method for the rapid synthesis of large ouantities of metal oxide nanowires at low temperatures. Adv. Mater. 2005, 17, 2138–2142.CrossRefGoogle Scholar
  24. [24]
    Cvelbar, U.; Chen, Z.; Sunkara, M. K.; Mozetic, M. Spontaneous growth of superstructureα-Fe2O3 nanowire and nanobelt arrays in reactive oxygen Plasma. Small 2008, 4, 1610–1614.CrossRefPubMedGoogle Scholar
  25. [25]
    Aronniemi, M.; Sainio, J.; Lahtinen, J. Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surface Sci. 2005, 578, 108–123.CrossRefADSGoogle Scholar
  26. [26]
    Kawabe, T.; Shimomura, S.; Karasuda, T.; Tabata, K.; Suzuki, E.; Yamaguchi, Y. Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO2 thin film. Surf. Sci. 2000, 448, 101–107.CrossRefADSGoogle Scholar
  27. [27]
    de Faria, D. L. A.; Lopes, F. N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121.CrossRefGoogle Scholar
  28. [28]
    de Faria, D. L. A.; Silva, V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectroscopy 1997, 28, 873.CrossRefADSGoogle Scholar
  29. [30]
    Sato, Y.; Young, D. J. High-temperature corrosion of lron at 900 °C in atmospheres containing HCl and H2O. Oxid. Met. 2001, 55, 243–260.CrossRefGoogle Scholar
  30. [31]
    Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Examination of the oxidation of iron by oxygen using X-ray photoelectron spectroscopy and QUASES (TM). Surface Sci. 2004, 565, 151–162.CrossRefADSGoogle Scholar
  31. [32]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefPubMedADSGoogle Scholar
  32. [33]
    Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.CrossRefPubMedADSGoogle Scholar
  33. [34]
    Wagner, R. S.; Ellis, W. C. Vapor liquid solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefADSGoogle Scholar
  34. [35]
    Chueh, Y. L.; Lai, M. -W.; Liang, J. -Q.; Chou, L. -J.; Wang Z. L. Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor solid process. Adv. Funct. Mater. 2006, 16, 2243–2251.CrossRefGoogle Scholar
  35. [36]
    Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 1975, 31, 20–30.CrossRefADSGoogle Scholar
  36. [39]
    Raynaud, G. M.; Rapp, R. A. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals. Oxid. Met. 1984, 21, 89–102.CrossRefGoogle Scholar
  37. [40]
    Hiralal, P.; Unalan, H. E.; Wijayantha, K. G. U.; Kursumovic, A.; JefFerson, D.; MacManus-Driscoll, J. L.; Amaratunga, G. A. J. Growth and process conditions of aligned and patternable films of iron(III) oxide nanowires by thermal oxidation of iron. Nanotechnology 2008, 19, 455608.Google Scholar
  38. [29]
    Saunders, S. R. J.; Monteiro, M.; Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Progress Mater. Sci. 2008, 53, 775–837.CrossRefGoogle Scholar
  39. [37]
    Young, D. High Temperature Oxidation and Corrosion of Metals; Elsevier Corrosion Series: Oxford, 2008.Google Scholar
  40. [38]
    Voss, D. A.; Butler, E. P.; Mitchell, T. E. The growth of hematite blades during the high-temperature oxidation of iron. Metall. Trans. A 1982, 13A, 929–935.ADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Albert G. Nasibulin
    • 1
  • Simas Rackauskas
    • 1
  • Hua Jiang
    • 1
  • Ying Tian
    • 1
  • Prasantha Reddy Mudimela
    • 1
  • Sergey D. Shandakov
    • 1
    • 2
  • Larisa I. Nasibulina
    • 1
  • Sainio Jani
    • 3
  • Esko I. Kauppinen
    • 1
    • 4
  1. 1.NanoMaterials Group, Department of Applied Physics and Center for New MaterialsHelsinki University of TechnologyEspooFinland
  2. 2.Laboratory of Carbon NanoMaterials, Department of PhysicsKemerovo State UniversityKemerovoRussia
  3. 3.Laboratory of PhysicsHelsinki University of TechnologyEspooFinland
  4. 4.VTT BiotechnologyEspooFinland

Personalised recommendations