Skip to main content

A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency

Abstract

A novel hybrid material prepared from graphene and poly (3,4-ethyldioxythiophene) (PEDOT) shows excellent transparency, electrical conductivity, and good flexibility, together with high thermal stability and is easily processed in both water and organic solvents. Conductivities of the order of 0.2 S/cm and light transmittance of greater than 80% in the 400–1800 nm wavelength range were observed for films with thickness of tens of nm. Practical applications in a variety of optoelectronic devices are thus expected for this transparent and flexible conducting graphene-based hybrid material.

References

  1. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    PubMed  Article  CAS  Google Scholar 

  2. Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

    PubMed  Article  CAS  Google Scholar 

  3. Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Müllen, K. Transparent carbon films as electrodes in organic solar cells. Angew. Chem, Int. Ed. 2008, 47, 2990–2992.

    Article  CAS  Google Scholar 

  4. Patil, A. O.; Heeger, A. J.; Wudl, F. Optical properties of conducting polymers. Chem. Rev. 1988, 88, 183–200.

    Article  CAS  Google Scholar 

  5. Frommer, J. E. Conducting polymer solutions. Acc. Chem. Res. 1986, 19, 2–9.

    Article  CAS  Google Scholar 

  6. Heeger, A. J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611.

    Article  CAS  Google Scholar 

  7. MacDiarmid, A. G. Synthetic metals: A novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.

    Article  CAS  Google Scholar 

  8. Groenendaal, B. L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly (3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481–494.

    Article  CAS  Google Scholar 

  9. Fan, B. H.; Mei, X. G.; Ouyang, J. Y. Significant conductivity enhancement of conductive poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 2008, 41, 5971–5973.

    Article  CAS  Google Scholar 

  10. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    PubMed  Article  ADS  CAS  Google Scholar 

  11. Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008, 20, 3924–3930.

    Article  CAS  Google Scholar 

  12. Jonas, F.; Krafft, W. Eur. Patent 440957 to Bayer AG, 1991.

  13. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Caro, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  14. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

    PubMed  Article  ADS  CAS  Google Scholar 

  15. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    PubMed  Article  ADS  CAS  Google Scholar 

  16. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.

    PubMed  Article  CAS  Google Scholar 

  17. Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.

    Article  CAS  Google Scholar 

  18. Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

    Article  CAS  Google Scholar 

  19. Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

    Article  CAS  Google Scholar 

  20. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    PubMed  Article  ADS  CAS  Google Scholar 

  21. Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

    PubMed  Article  CAS  Google Scholar 

  22. Yi, B.; Rajagopalan, R.; Foley, H. C.; Kim, U. J.; Liu, X. M.; Eklund, P. C. Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J. Am. Chem. Soc. 2006, 128, 11307–11313.

    PubMed  Article  CAS  Google Scholar 

  23. Han, M. G.; Foulger, S. H. 1-Dimensional structures of poly (3,4-ethylenedioxythiophene) (PEDOT): A chemical route to tubes, rods, thimbles, and belts. Chem. Commun. 2005, 3092–3094.

  24. Kvarnstrom, C.; Neugebauer, H.; Ivaska, A.; Sariciftci, N. S. Vibrational signatures of electrochemical p- and n-doping of poly (3,4-ethylenedioxythiophene) films: An in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J. Mol. Struct. 2000, 521, 271–277.

    Article  ADS  CAS  Google Scholar 

  25. Guo, Z.; Du, F.; Ren, D.; Chen, Y.; Zheng, J.; Liu, Z.; Tian, J. Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater. Chem. 2006, 16, 3021–3030.

    Article  CAS  Google Scholar 

  26. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Electronic supplementary material

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Xu, Y., Wang, Y., Liang, J. et al. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2, 343–348 (2009). https://doi.org/10.1007/s12274-009-9032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-009-9032-9

Keywords

  • Graphene poly (3,4-ethyldioxythiophene) (PEDOT) optical transparency
  • conductivity
  • flexibility
  • stability