Nano Research

, Volume 2, Issue 3, pp 254–259 | Cite as

STM manipulation of molecular moulds on metal surfaces

  • Miao Yu
  • Wei Xu
  • Youness Benjalal
  • Regis Barattin
  • Erik Lægsgaard
  • Ivan Stensgaard
  • Mohamed Hliwa
  • Xavier Bouju
  • André Gourdon
  • Christian Joachim
  • Trolle R. Linderoth
  • Flemming Besenbacher
Open Access
Research Article

Abstract

Molecular Landers are a class of compounds containing an aromatic board as well as bulky side groups which upon adsorption of the molecule on a surface may lift the molecular board away from the substrate. Different molecular Landers have extensively been studied as model systems for nanomachines and the formation of molecular wires, as well as for their function as “molecular moulds”, i.e., acting as templates by accommodating metal atoms underneath their aromatic board. Here, we investigate the adsorption of a novel Lander molecule 1,4-bis(4-(2,4-diaminotriazine)phenyl)-2,3,5,6-tetrakis(4-tert-butylphenyl)benzene (DAT, C64H68N10) on Cu(110) and Au(111) surfaces under ultrahigh vacuum (UHV) conditions. By means of scanning tunneling microscopy (STM) imaging and manipulation, we characterize the morphology and binding geometries of DAT molecules at terraces and step edges. On the Cu(110) surface, various contact configurations of individual DAT Landers were formed at the step edges in a controlled manner, steered by STM manipulation, including lateral translation, rotation, and pushing molecules to an upper terrace. The diffusion barrier of single DAT molecules on Au(111) is considerably smaller than on Cu(110). The DAT Lander is specially designed with diamino-triazine side groups making it suitable for future studies of molecular self-assembly by hydrogen-bonding interactions. The results presented here are an important guide to the choice of substrate for future studies using this compound.

Keywords

Scanning tunneling microscopy (STM) molecular Landers adsorption STM manipulation molecular moulding 

References

  1. [1]
    Joachim, C.; Gimzewski, J. K.; Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Gourdon, A. Synthesis of “Molecular Landers”. Eur. J. Org. Chem. 1998, 1998, 2797–2801.CrossRefGoogle Scholar
  4. [4]
    Magoga, M.; Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 1997, 56, 4722–4729.CrossRefADSGoogle Scholar
  5. [5]
    Gross, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Trapping and moving metal atoms with a six-leg molecule. Nat. Mater. 2005, 4, 892–895.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Schunack, M.; Rosei, F.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Adsorption behavior of Lander molecules on Cu(110) studied by scanning tunneling microscopy. J. Chem. Phys. 2002, 117, 6259–6265.CrossRefADSGoogle Scholar
  7. [7]
    Savio, L.; Gross, L.; Rieder, K. -H.; Gourdon, A.; Joachim, C.; Moresco, F. Interaction of a long molecular wire with a nanostructured surface: Violet Landers on Cu(211). Chem. Phys. Lett. 2006, 428, 331–337.CrossRefADSGoogle Scholar
  8. [8]
    Grill, L.; Rieder, K. -H.; Moresco, F.; Rapenne, G.; Stojokovic, S.; Bouju, X.; Joachim, C. Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2007, 2, 95–98.PubMedCrossRefADSGoogle Scholar
  9. [9]
    Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Yao, Y. X.; Saudan, L.; Yang, H. B.; Chiu, Y. -H.; Alemany, L. B.; Sasaki, T.; Morin, J. -F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.PubMedCrossRefGoogle Scholar
  10. [10]
    Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res. 2008, 1, 412–419.CrossRefGoogle Scholar
  11. [11]
    Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Organic molecules acting as templates on metal surfaces. Science 2002, 296, 328–331.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497–525.PubMedCrossRefGoogle Scholar
  13. [13]
    Grill, L.; Moresco, F. Contacting single molecules to metallic electrodes by scanning tunneling microscope manipulation: Model systems for molecular electronics. J. Phys.: Condens. Matter 2006, 18, S1887–1908.CrossRefADSGoogle Scholar
  14. [14]
    Grill, L.; Moresco, F.; Jiang, P.; Joachim, C.; Gourdon, A.; Rieder, K. -H. Controlled manipulation of a single molecular wire along a copper atomic nanostructure. Phys. Rev. B 2004, 69, 035416.Google Scholar
  15. [15]
    Moresco, F.; Meyer, G.; Rieder, K. -H.; Tang, H.; Gourdon, A.; Joachim, C. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 2001, 86, 672–675.PubMedCrossRefADSGoogle Scholar
  16. [17]
    Grill, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Controlling the electronic interaction between a molecular wire and its atomic scale contacting pad. Nano Lett. 2005, 5, 859–863.PubMedCrossRefGoogle Scholar
  17. [18]
    Alemani, M.; Gross, L.; Moresco, F.; Rieder, K. -H.; Wang, C.; Bouju, X.; Gourdon, A.; Joachim, C. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 2005, 402, 180–185.CrossRefADSGoogle Scholar
  18. [19]
    Otero, R.; Rosei, F.; Naitoh, Y.; Jiang, P.; Thostrup, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Nanostructuring Cu surfaces using custom-designed molecular molds. Nano Lett. 2004, 4, 75 78.CrossRefGoogle Scholar
  19. [20]
    Otero, R.; Hümmelink, F.; Sato, F.; Legoas, S. B.; Thostrup, P.; Lægsgaard, E.; Stensgaard, I.; Galvão, D. S.; Besenbacher, F. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 2004, 3, 779–782.PubMedCrossRefADSGoogle Scholar
  20. [21]
    Kuntze, J.; Ge, X.; Berndt, R. Chiral structures of Lander molecules on Cu(100). Nanotechnology 2004, 15, S337–340.CrossRefADSGoogle Scholar
  21. [22]
    Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vazquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854–858.PubMedCrossRefGoogle Scholar
  22. [23]
    Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.PubMedCrossRefADSGoogle Scholar
  23. [24]
    De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; De Schryver, F. C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. Nano Lett. 2005, 5, 77–81.PubMedCrossRefGoogle Scholar
  24. [25]
    Ruiz-Oses, M.; Gonzalez-Lakunza, N.; Silanes, I.; Gourdon, A.; Arnau, A.; Ortega, J. E. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy. J. Phys. Chem. B 2006, 110, 25573–25577.PubMedCrossRefGoogle Scholar
  25. [26]
    Lægsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542.CrossRefADSGoogle Scholar
  26. [27]
    Sautet, P.; Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 1991, 185, 23–30.CrossRefADSGoogle Scholar
  27. [28]
    Allinger, N. L.; Chen, K.; Lii, J. -H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 1996, 17, 642–668.CrossRefGoogle Scholar
  28. [29]
    Zambelli, T.; Goudeau, S.; Lagoute, J.; Gourdon, A.; Bouju, X.; Gauthier, S.; Molecular self-assembly of jointed molecules on a metallic substrate: From single molecule to monolayer. Chem. Phys. Chem. 2006, 7, 1917–1920.PubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Miao Yu
    • 1
  • Wei Xu
    • 1
  • Youness Benjalal
    • 2
    • 3
  • Regis Barattin
    • 2
  • Erik Lægsgaard
    • 1
  • Ivan Stensgaard
    • 1
  • Mohamed Hliwa
    • 2
    • 3
  • Xavier Bouju
    • 2
  • André Gourdon
    • 2
  • Christian Joachim
    • 2
  • Trolle R. Linderoth
    • 1
  • Flemming Besenbacher
    • 1
  1. 1.Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Nanoscience groupCEMES-CNRSToulouseFrance
  3. 3.Faculté des Sciences Ben M’sikUniversité Hassan II-MohammédiaSidi Othman, CasablancaMorocco

Personalised recommendations