Nano Research

, Volume 2, Issue 3, pp 177–182 | Cite as

Output of an ultrasonic wave-driven nanogenerator in a confined tube

  • Xudong Wang
  • Yifan Gao
  • Yaguang Wei
  • Zhong Lin Wang
Open Access
Research Article


The output of an ultrasonic wave-driven nanogenerator (NG) has been found to depend on the excitation conditions and geometry. Incidence angle tests indicate that the effective area of an NG determines the amount of power that can be generated. The output power of an NG is also directly related to its distance from the ultrasonic source. A sinusoidal profile of the electrical output was observed when an NG was moved inside a long tube filled with water with the ultrasonic source located at one end. This is due to the oscillation of the wave intensity inside the tube as a function of the distance from the excitation source.


Nanogenerator ultrasonic wave ZnO nanowire 


  1. [1]
    Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82–87.PubMedCrossRefGoogle Scholar
  2. [2]
    Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  3. [3]
    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Paradiso, J. A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervas. Comput. 2005, 14, 18–27.CrossRefGoogle Scholar
  5. [5]
    Roundy, S.; Wright, P. K. A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131–1142.CrossRefADSGoogle Scholar
  6. [6]
    Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Granstrom, J.; Feenstra, J.; Sodano, H. A.; Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007, 16, 1810–1820.CrossRefADSGoogle Scholar
  8. [8]
    Williams, C. B.; Yates, R. B. Analysis of a micro-electric generator for microsystems. Sensor. Actuat. A-Phys. 1996, 52, 8–11.CrossRefGoogle Scholar
  9. [9]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Song, J. H.; Zhou, J.; Wang, Z. L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire: A technology for harvesting electricity from the environment. Nano Lett. 2006, 6, 1656–1662.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Qin, Y., Wang, X. D.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Wang, X. D.; Liu, J.; Song, J. H; Wang, Z. L. Integrated nanogenerators in biofluid. Nano Lett. 2007, 7, 2475–2479.PubMedCrossRefADSGoogle Scholar
  14. [14]
    Liu, J.; Fei, P.; Zhou, J.; Tummala, R.; Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 2008, 92, 173105.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Xudong Wang
    • 1
    • 2
  • Yifan Gao
    • 1
  • Yaguang Wei
    • 1
  • Zhong Lin Wang
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin at MadisonMadisonUSA

Personalised recommendations