Nano Research

, Volume 2, Issue 3, pp 235–241 | Cite as

Identification of molecular flipping of an asymmetric tris(phthalocyaninato) lutetium triple-decker complex by scanning tunneling microscopy/spectroscopy

  • Xianghua Kong
  • Shengbin Lei
  • Yanlian Yang
  • Ke Deng
  • Guicun Qi
  • Chen Wang
Open Access
Research Article

Abstract

The assembling behavior and electronic properties of asymmetric tris(phthalocyaninato) lutetium tripledecker sandwich complex molecules (Lu2Pc3) on highly oriented pyrolytic graphite (HOPG) surfaces have been studied by scanning tunneling microscopy/spectroscopy (STM/STS) methods. Phase transitions were observed at different bias polarities, involving an ordered packing arrangement with fourfold symmetry at negative bias and an amorphous arrangement at positive bias. Molecular switching behaviour for individual Lu2Pc3 molecules was reported here according to the bias-polarity-induced flipping phenomena and the peak shift in dI/dV versus V curves at different voltage scanning directions. The sensitive response of the strong intrinsic molecular dipole to an external electric field is proposed to be responsible for molecular switching of Lu2Pc3 at the solid/liquid interface.

Keywords

Triple-decker sandwich complex phase transition molecular switch scanning tunneling microscopy/spectroscopy 

References

  1. [1]
    Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. -H.; Moresco, F.; Grill, L. Electric field-induced isomerization of azobenzene by STM. J. Am. Chem. Soc. 2006, 128, 14446–14447.PubMedCrossRefGoogle Scholar
  2. [2]
    Yoshimoto, S.; Yokoo, N.; Fukuda, T.; Kobayashi, N.; Itaya, K. Formation of highly ordered porphyrin adlayers induced by electrochemical potential modulation. Chem. Commun. 2006, 500–502.Google Scholar
  3. [3]
    Yang, Y. L.; Chan, Q. L.; Ma, X. J.; Deng, K.; Shen, Y. T.; Feng, X. Z.; Wang, C. Electrical conformational bistability of dimesogen molecules with a molecular chord structure. Angew. Chem., Int. Ed. 2006, 45, 6889–6893.CrossRefGoogle Scholar
  4. [4]
    Bondos, J. C.; Drummer, N. E.; Gewirth, A. A.; Nuzzo, R. G. Thermal phase evolution of Pt-Si intermetallic thin films prepared by the activated adsorption of SiH4 on Pt(100) and comparison to known structural models. J. Am. Chem. Soc. 1999, 121, 2498–2507.CrossRefGoogle Scholar
  5. [5]
    Ruben, M.; Payer, D.; Landa, A.; Comisso, A.; Gattinoni, C.; Lin, N.; Collin, J. -P.; Sauvage, J. -P.; De Vita, A.; Kern, K. 2-D supramolecular assemblies of benzene-1,3,5-triyl-tribenzoic acid: Temperature-induced phase transformations and hierarchical organization with macrocyclic molecules. J. Am. Chem. Soc. 2006, 128, 15644–15651.PubMedCrossRefGoogle Scholar
  6. [6]
    Rohde, D.; Yan, C. J.; Yan, H. J.; Wan, L. J. From a lamellar to hexagonal self-assembly of bis(4,4′-(m,m′-di(dodecyloxy)phenyl)-2,2′-difluoro-1,3,2-dioxaborin) molecules: A trans-to-cis-isomerization-induced structural transition studied with STM. Angew. Chem. Int. Ed. 2006, 45, 3996–4000.CrossRefGoogle Scholar
  7. [7]
    Kong, X. H.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C. Effect of thermal annealing on hydrogen bond configurations of host lattice revealed in VOPc/TCDB host-guest architectures. J. Phys. Chem. C 2007, 111, 9235–9239.CrossRefGoogle Scholar
  8. [8]
    Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 1994, 369, 133–137.CrossRefADSGoogle Scholar
  9. [9]
    Gopakumar, T. G.; Müller, F.; Hietschold, M. Scanning tunneling microscopy and scanning tunneling spectroscopy studies of planar and nonplanar naphthalocyanines on graphite (0001). Part 1: Effect of nonplanarity on the adlayer structure and voltage-induced flipping of nonplanar tin-naphthalocyanine. J. Phys. Chem. B 2006, 110, 6051–6059.PubMedCrossRefGoogle Scholar
  10. [10]
    Lei, S. B.; Deng, K.; Yang, Y. L.; Zeng, Q. D.; Wang, C.; Jiang, J. Z. Electric driven molecular switching of asymmetric tris(phthalocyaninato) lutetium triple-decker complex at the liquid/solid interface. Nano Lett. 2008, 8, 1836–1843.PubMedCrossRefGoogle Scholar
  11. [11]
    Qiu, X. H.; Nazin, G. V.; Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 2003, 299, 542 546.PubMedCrossRefGoogle Scholar
  12. [12]
    Nazin, G. V.; Qiu, X. H.; Ho. W. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 2003, 302, 77–81.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Scudiero, L.; Barlow, D. E.; Mazur, U.; Hipps, K. W. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor. J. Am. Chem. Soc. 2001, 123, 4073–4080.PubMedCrossRefGoogle Scholar
  14. [14]
    Deng, W.; Hipps, K. W. Tip-sample distance dependence in the STM-based orbital-mediated tunneling spectrum of nickel(II) tetraphenylporphyrin deposited on Au(111). J. Phys. Chem. B 2003, 107, 10736–10740.CrossRefGoogle Scholar
  15. [15]
    Ouyang, M.; Huang, J. L.; Cheung, C. L.; Lieber, C. M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705.PubMedCrossRefADSGoogle Scholar
  16. [16]
    Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible measurement of single-molecule conductivity. Science 2001, 294, 571–574.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Jäckel, F.; Yin, X.; Samorì, P.; Tchebotareva, N.; Watson, M. D.; Venturini, A.; Müllen, K.; Rabe, J. P. Nanophase segregation and rectification in monolayers of functionalized hexa peri-hexabenzocoronenes. Synth. Met. 2004, 147, 5–9.CrossRefGoogle Scholar
  18. [18]
    Samorì, P.; Yin, X.; Tchebotareva, N.; Wang, Z.; Pakula, T.; Jäfckel, F.; Watson, M. D.; Venturini, A.; Müllen, K.; Rabe, J. P. Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: Surface patterning and columnar “double cables”. J. Am. Chem. Soc. 2004, 126, 3567–3575.PubMedCrossRefGoogle Scholar
  19. [19]
    Miura, A.; Chen, Z.; Uji-i, H.; De Feyter, S.; Zdanowska, M.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; Würthner, F.; De Schryver, F. C. Bias-dependent visualization of electron donor (D) and electron acceptor (A) moieties in a chiral DAD triad molecule. J. Am. Chem. Soc. 2003, 125, 14968–14969.PubMedCrossRefGoogle Scholar
  20. [20]
    Jiang, J.; Bian, Y.; Furuya, F.; Liu, W.; Choi, M. T. M.; Kobayashi, N.; Li, H. W.; Yang, Q.; Mak, T. C. W.; Ng, D. K. P. Synthesis, structure, spectroscopic properties, and electrochemistry of rare earth sandwich compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. Chem. Eur. J. 2001, 7, 5059–5069.CrossRefGoogle Scholar
  21. [21]
    Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D. Y. Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Electron-donating alkoxy-group-driven synthesis of heteroleptic tris(phthalocyaninato) lanthanide(III) triple-deckers with symmetrical molecular structure. Chem. Eur. J. 2005, 11, 1425 1432.CrossRefGoogle Scholar
  22. [22]
    Tashiro, K.; Konishi, K.; Aida, T. Metal bisporphyrinate double-decker complexes as redox-responsive rotating modules. Studies on ligand rotation activities of the reduced and oxidized forms using chirality as a probe. J. Am. Chem. Soc. 2000, 122, 7921–7926.CrossRefGoogle Scholar
  23. [23]
    Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High performance organic field-effect transistors based on amphiphilic tris(phthalocyaninato) rare earth triple-decker complexes. J. Am. Chem. Soc. 2005, 127, 15700–15701.PubMedCrossRefGoogle Scholar
  24. [24]
    Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553.CrossRefADSGoogle Scholar
  25. [25]
    Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.CrossRefADSGoogle Scholar
  26. [26]
    Collins, R. A.; Mohammed, K. A. Gas sensitivity of some metal phthalocyanines. J. Phys. D: Appl. Phys. 1988, 21, 154–161.CrossRefADSGoogle Scholar
  27. [27]
    Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 1996, 69, 3066–3068.CrossRefADSGoogle Scholar
  28. [28]
    Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Adv. Mater. 1997, 9, 42–44.CrossRefGoogle Scholar
  29. [29]
    Nicholson, M. M. In Phthalocyanines — Properties and Applications, Vol. 3; Leznoff, C. C.; Lever, A. B. P., Eds.; VCH: New York, 1993, pp. 71–117.Google Scholar
  30. [30]
    Madru, R.; Guillaud, G.; Al Sadoun, M.; Maitrot, M.; André, J. -J.; Simon, J.; Even, R. A well-behaved field-effect transistor based on an intrinsic molecular semiconductor. Chem. Phys. Lett. 1988, 145, 343–346.CrossRefADSGoogle Scholar
  31. [31]
    Rickwood, K. R.; Lovett, D. R.; Lukas, B.; Silver, J. Semiconducting, pyroelectric and chlorine-sensing properties of ytterbium bisphthalocyanine Langmuir-Blodgett thin-films. J. Mater. Chem. 1995, 5, 725–729.CrossRefGoogle Scholar
  32. [32]
    Klymchenko, A. S.; Sleven, J.; Binnemans, K.; De Feyter, S. Two-dimensional self-assembly and phase behavior of an alkoxylated sandwich-type bisphthalocyanine and its phthalocyanine analogues at the liquid-solid interface. Langmuir 2006, 22, 723–728.PubMedCrossRefGoogle Scholar
  33. [33]
    Binnemans, K.; Sleven, J.; De Feyter, S.; De Schryver, F. C.; Donnio, B.; Guillon, D. Structure and mesomorphic behavior of alkoxy-substituted bis(phthalocyaninato)lan thanide(III) complexes. Chem. Mater. 2003, 15, 3930–3938.CrossRefGoogle Scholar
  34. [34]
    Yang, Z. Y.; Gan, L. H.; Lei, S. B.; Wan, L. J.; Wang, C.; Jiang, J. Z. Self-assembly of PcOC8 and its sandwich lanthanide complex Pr(PcOC8)2 with oligo(phenyleneethynylene) molecules. J. Phys. Chem. B 2005, 109, 19859–19865.PubMedCrossRefGoogle Scholar
  35. [35]
    Ma, H.; Ou Yang, L. Y.; Pan, N.; Yau, S. L.; Jiang, J.; Itaya, K. Ordered molecular assemblies of substituted bis(phthalocyaninato) rare earth complexes on Au(111): In situ scanning tunneling microscopy and electrochemical studies. Langmuir 2006, 22, 2105–2111.PubMedCrossRefGoogle Scholar
  36. [36]
    Takami, T.; Arnold, D. P.; Fuchs, A. V.; Will, G. D.; Goh, R.; Waclawik, E. R.; Bell, J. M.; Weiss, P. S.; Sugiura, K.; Liu, W.; Jiang, J. Two-dimensional crystal growth and stacking of bis(phthalocyaninato) rare earth sandwich complexes at the 1-phenyloctane/graphite interface. J. Phys. Chem. B 2006, 110, 1661–1664.PubMedCrossRefGoogle Scholar
  37. [37]
    Qiu, X.; Wang, C.; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.; Bai, C. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 2000, 122, 5550–5556.CrossRefGoogle Scholar
  38. [38]
    Qiu, X.; Wang, C.; Yin, S.; Zeng, Q.; Xu, B.; Bai, C. Selfassembly and immobilization of metallophthalocyanines by alkyl substituents observed with scanning tunneling microscopy. J. Phys. Chem. B 2000, 104, 3570–3574.CrossRefGoogle Scholar
  39. [39]
    Lei, S. B.; Deng, K.; Yang, D. L.; Zeng, Q. D.; Wang, C. Charge-transfer effect at the interface of phthalocyanine-electrode contact studied by scanning tunneling spectroscopy. J. Phys. Chem. B 2006, 110, 1256–1260.PubMedCrossRefGoogle Scholar
  40. [40]
    Kong, X. H.; Wang, M.; Lei, S. B.; Yang, Y. L.; Wang, C. Electronic sensory behavior of titanylphthalocyanine revealed by scanning tunneling spectroscopy and cyclic voltammetry methods. J. Mater. Chem. 2006, 16, 4265–4269.CrossRefGoogle Scholar
  41. [41]
    Ishikawa, N. Electronic structures and spectral properties of double- and triple-decker phthalocyanine complexes in a localized molecular orbital view. J. Porphyr. Phthalocya. 2001, 5, 87–101.CrossRefGoogle Scholar
  42. [42]
    Chen, Y. L.; Li, R. J.; Wang, R. M.; Ma, P.; Dong, S.; Gao, Y. N.; Li, X. Y.; Jiang, J. Z. Effect of peripheral hydrophobic alkoxy substitution on the organic field effect transistor performance of amphiphilic tris(phthalocyaninato) europium triple-decker complexes. Langmuir 2007, 23, 12549–12554.PubMedCrossRefGoogle Scholar
  43. [43]
    Li, R. J.; Ma, P.; Dong, S.; Zhang, X. Y.; Chen, Y. L.; Li, X. Y.; Jiang, J. Z. Synthesis, characterization, and OFET properties of amphiphilic heteroleptic tris(phthalocyaninato) europium(III) complexes with hydrophilic poly(oxyethylene) substituents. Inorg. Chem. 2007, 46, 11397 11404.PubMedGoogle Scholar
  44. [44]
    Guyon, F.; Pondaven, A.; Kerbaol, J. -M.; L’Her, M. From the single-to the triple-decker sandwich. Effect of stacking on the redox and UV-visible spectroscopic properties of lutetium(III) 1,2-naphthalocyaninate complexes. Inorg. Chem. 1998, 37, 569–576.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Xianghua Kong
    • 1
  • Shengbin Lei
    • 2
  • Yanlian Yang
    • 2
  • Ke Deng
    • 2
  • Guicun Qi
    • 2
  • Chen Wang
    • 2
  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations