Nano Research

, Volume 2, Issue 3, pp 220–234 | Cite as

Fluorescent superlattices of gold nanoparticles: A new class of functional materials

  • Edakkattuparambil Sidharth Shibu
  • Madathumpady Abubaker Habeeb Muhammed
  • Keisaku Kimura
  • Thalappil Pradeep
Open Access
Research Article


Fluorescent three-dimensional (3-D) superlattices of dansyl glutathione protected gold nanoparticles, with potential applications in molecular detection, have been synthesized at an air/water interface by controlling the pH of the nanoparticle suspension. The number of fluorophores per nanoparticle was calculated to be ∼127. Morphologies of the superlattice crystals were examined using scanning electron microscopy (SEM). Most of the crystals observed were triangular in shape. High-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) were used to study the packing of nanoparticles in these crystals. Both these studies showed that the nanoparticles were arranged in a face-centered cubic (fcc) pattern with a particle-particle distance (center-center) of ∼10.5 nm. Evolution of the crystal morphologies with time was also examined. The fluorescence properties of these triangles were studied using confocal fluorescence imaging and confocal Raman mapping, which were in good agreement with the morphologies observed by SEM. The superlattice exhibits near-infrared (NIR) absorption in the range 1100–2500 nm. Easy synthesis of such functional nanoparticle-based solids makes it possible to use them in novel applications. We utilized the fluorescence of dansyl glutathione gold superlattice crystals for the selective detection of bovine serum albumin (BSA), the major protein constituent of blood plasma, based on the selective binding of the naphthalene ring of the dansyl moiety with site I of BSA.


Periodic self-assembly dansyl glutathione fluorescent superlattice confocal fluorescence imaging selective binding 

Supplementary material

12274_2009_9020_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.23 MB.


  1. [1]
    Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49, 371–404.PubMedCrossRefGoogle Scholar
  2. [2]
    Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 2004, 429, 642–646.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Airstable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Reguicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Hoinville, J.; Bewick, A.; Gleeson, D.; Jones, R.; Kasyutich, O.; Mayes, E.; Nartowski, A.; Warne, B.; Wiggins, J.; Wong, K. High density magnetic recording on protein-derived nanoparticles. J. Appl. Phys. 2003, 93, 7187–7189.CrossRefADSGoogle Scholar
  6. [6]
    Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 2002, 106, 11463–11468.CrossRefGoogle Scholar
  7. [7]
    Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014.PubMedCrossRefGoogle Scholar
  8. [8]
    Motesharei, K.; Myles, D. C. Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J. Am. Chem. Soc. 1998, 120, 7328–7336.CrossRefGoogle Scholar
  9. [9]
    Spinke, J.; Liley, M.; Guder, H. -J.; Angermaier, L.; Knoll, W. Molecular recognition at self-assembled monolayers: The construction of multicomponent multilayers. Langmuir 1993, 9, 1821–1825.CrossRefGoogle Scholar
  10. [10]
    Alivisatos, A. P.; Johnson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. Organization of “nanocrystal molecules” using DNA. Nature 1996, 382, 609–611.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.CrossRefADSGoogle Scholar
  12. [12]
    Korgel, B. A.; Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 1998, 10, 661–665.CrossRefGoogle Scholar
  13. [13]
    Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.CrossRefGoogle Scholar
  14. [14]
    Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. 1996, 100, 13904–13910.CrossRefGoogle Scholar
  15. [15]
    Sigman, M. B., Jr.; Saunders, A. E.; Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 2004, 20, 978–983.PubMedCrossRefGoogle Scholar
  16. [16]
    Wang, Z. L.; Harfenist, S. A.; Vezmar, I.; Whetten, R. L.; Bentley, J.; Evans, N. D.; Alexander, K. B. Superlattices of self-assembled tetrahedral Ag nanocrystals. Adv. Mater. 1998, 10, 808–812.CrossRefGoogle Scholar
  17. [17]
    Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamondlike lattice. Science 2006, 312, 420–424.PubMedCrossRefADSGoogle Scholar
  18. [18]
    Harfenist, S. A.; Wang, Z. L.; Whetten, R. L.; Vezmar, I.; Alvarez, M. M. Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals. Adv. Mater. 1997, 9, 817–822.CrossRefGoogle Scholar
  19. [19]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefGoogle Scholar
  20. [20]
    Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. Engl. 1997, 36, 1078–1080.CrossRefGoogle Scholar
  21. [21]
    Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.PubMedCrossRefADSGoogle Scholar
  22. [22]
    Taleb, A.; Petit, C.; Pileni, M. P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2-D and 3-D self-organization. Chem. Mater. 1997, 9, 950–959.CrossRefGoogle Scholar
  23. [23]
    Daniel, M. -C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.PubMedCrossRefGoogle Scholar
  24. [24]
    Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12, 653–664.CrossRefGoogle Scholar
  25. [25]
    Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423, 968–971.PubMedCrossRefADSGoogle Scholar
  26. [26]
    Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem. B 2003, 107, 7441–7448.CrossRefGoogle Scholar
  27. [27]
    Dabbousi, B. O.; Murray, C. B.; Rubner, M. F.; Bawendi, M. G. Langmuir-Blodgett manipulation of size-selected CdSe nanocrystallites. Chem. Mater. 1994, 6, 216–219.CrossRefGoogle Scholar
  28. [28]
    Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.CrossRefGoogle Scholar
  29. [29]
    Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc. 2002, 124, 2305–2311.PubMedCrossRefGoogle Scholar
  30. [30]
    Binder, W. H. Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 5172–5175.CrossRefGoogle Scholar
  31. [31]
    Sanyal, M. K.; Agrawal, V. V.; Bera, M. K.; Kalyanikutty, K. P.; Daillant, J.; Blot, C.; Kubowicz, S.; Konovalov, O.; Rao. C. N. R. Formation and ordering of gold nanoparticles at the toluene-water interface. J. Phys. Chem. C. 2008, 112, 1739–1743, and the reference, 6a and 6b cited therein.CrossRefGoogle Scholar
  32. [32]
    Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem. Commun. 1997, 537–538.Google Scholar
  33. [33]
    Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Nanoparticle assembly and transport at liquid-liquid interfaces. Science 2003, 299, 226–229.PubMedCrossRefADSGoogle Scholar
  34. [34]
    Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. Adv. Mater. 2001, 13, 1868–1871.CrossRefGoogle Scholar
  35. [35]
    Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russel, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746 748.PubMedGoogle Scholar
  36. [36]
    Demer, L. M.; Ginger, D. S.; Park, S. -J.; Li, Z.; Chung, S. -W.; Mirkin, C. A. Direct pattering of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002, 296, 1836–1838.CrossRefADSGoogle Scholar
  37. [37]
    Sanyal, A.; Norsten, T. B.; Uzun, O.; Rotello, V. M. Adsorption/desorption of mono- and di-block copolymers on surfaces using specific hydrogen bonding interactions. Langmuir 2004, 20, 5958–5964.PubMedCrossRefGoogle Scholar
  38. [38]
    Kimura, K.; Sato, S.; Yao, H. Particle crystals of surface modified gold nanoparticles growth from water. Chem. Lett. 2001, 30, 372 373.Google Scholar
  39. [39]
    Wang, S. H.; Sato, S.; Kimura, K. Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chem. Mater. 2003, 15, 2445–2448.CrossRefGoogle Scholar
  40. [40]
    Wang, S. H.; Yao, H.; Sato, S.; Kimura, K. Inclusion-water-cluster in a three-dimensional superlattice of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 7438–7439.PubMedCrossRefGoogle Scholar
  41. [41]
    Yang, Y.; Liu, S.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665.CrossRefGoogle Scholar
  42. [42]
    Yao, H.; Minami, T.; Hori, A.; Koma, M.; Kimura, K. Fivefold symmetry in superlattices of monolayer-protected gold nanoparticles. J. Phys. Chem B. 2006, 110, 14040–14045.PubMedCrossRefGoogle Scholar
  43. [43]
    Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T. Fluorescent gold nanoparticle superlattices. Adv. Mater. 2008, 20, 4719–4723.CrossRefGoogle Scholar
  44. [44]
    Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444–446.CrossRefGoogle Scholar
  45. [45]
    Rogach, A. L. Binary superlattices of nanoparticles: Self-assembly leads to “metamaterials”. Angew. Chem. Int. Ed. 2004, 43, 148–149.CrossRefGoogle Scholar
  46. [46]
    Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Synergistic effects in binary nanocrystal superlattices: Enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 2007, 6, 115–121.PubMedCrossRefADSGoogle Scholar
  47. [47]
    Chen, Z. Y.; Moore, J.; Radtke, G.; Sirringhaus, H.; O’Brien, S. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe. J. Am. Chem. Soc. 2007, 129, 15702–15709.PubMedCrossRefGoogle Scholar
  48. [48]
    Chen, Z.; O’Brien, S. Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2008, 2, 1219–1229.PubMedCrossRefGoogle Scholar
  49. [49]
    Terrill, R. H.; Postlethwaite, T. A. P.; Chen, C. H.; Poon, C. D; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 1995, 117, 12537–12548.CrossRefGoogle Scholar
  50. [50]
    Shibu, E. S.; Habeeb Muhammed, M. A.; Tsukuda, T.; Pradeep, T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: Spectroscopy, kinetics and luminescence. J. Phys. Chem C. 2008 112, 12168–12176.CrossRefGoogle Scholar
  51. [51]
    Habeeb Muhammed, M. A.; Shaw, A. K.; Pal, S. K.; Pradeep, T. Quantum clusters of gold exhibiting FRET. J. Phys. Chem C. 2008, 112, 14324–14330.CrossRefGoogle Scholar
  52. [52]
    Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.CrossRefGoogle Scholar
  53. [53]
    Wang, Z. L.; Harfenist, A. S.; Whetten, R. L.; Bentley, J.; Evans, N. D. Bundling interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices. J. Phys. Chem. B 1998, 102, 3068–3072.CrossRefGoogle Scholar
  54. [54]
    Maxwell, D. J.; Taylor, J. R.; Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 2002, 124, 9606–9612.PubMedCrossRefGoogle Scholar
  55. [55]
    Pandey, R. K.; Constantine, S.; Tsuchida, T.; Zheng, G.; Medforth, C. J.; Aoudia, M.; kozyrev, A. N.; Rodgers, M. A. J.; Kato, H.; Smith, K. M.; Dougherty, T. J. Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J. Med. Chem. 1997, 40, 2770–2779.PubMedCrossRefGoogle Scholar
  56. [56]
    Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570–7574.CrossRefGoogle Scholar
  57. [57]
    Levy, E. J.; Anderson, M. E.; Meister, A. On the synthesis and characterization of N-formyl glutathione and N-acetyl glutathione. Anal. Biochem. 1993, 214, 135-137.Google Scholar
  58. [58]
    Gan, J. P.; Harper, T. W.; Hsueh, M. -M.; Qu, Q. L.; Humphreys, W. G. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem. Res. Toxicol. 2005, 18, 896–903.PubMedCrossRefGoogle Scholar
  59. [59]
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  60. [60]
    Biswas, K.; Varghese, N.; Rao, C. N. R. Growth kinetics of gold nanocrystals: A combined small-angle X-ray scattering and calorimetric study. Small 2008, 4, 649–655.PubMedCrossRefGoogle Scholar
  61. [61]
    Pedersen, J. S. A flux- and background- optimized version of the nanoSTAR small-angle X-ray scattering camera for solution scattering. J. Appl. Crystallogr. 2004, 37, 369–380.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Edakkattuparambil Sidharth Shibu
    • 1
  • Madathumpady Abubaker Habeeb Muhammed
    • 1
  • Keisaku Kimura
    • 2
  • Thalappil Pradeep
    • 1
  1. 1.DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of TechnologyMadras, ChennaiIndia
  2. 2.Graduate School of Material ScienceUniversity of HyogoAko-gun HyogoJapan

Personalised recommendations