Nano Research

, Volume 2, Issue 3, pp 210–219 | Cite as

Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor

  • Xiao Chen
  • Jing Jing Zhang
  • Jie Xuan
  • Jun Jie Zhu
Open Access
Research Article


A novel biosensor based on a myoglobin/gold nanoparticles/carbon spheres (Mb-AuNPs-CNs) 3-D architecture bioconjunction has been fabricated for the determination of hydrogen peroxide (H2O2). Cyclic voltammetry (CV), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to characterize the bioconjunction of the AuNPs-CNs with Mb. Experimental results demonstrate that the AuNPs-CNs hybrid material is more effective in facilitating electron transfer of the immobilized enzyme than CNs alone, which can be attributed to the unique nanostructure and larger surface area of the bioconjunction. The biosensor displayed good performance for the detection of H2O2 with a wide linear range from 0.28 μmol/L to 116.5 μmol/L and a detection limit of 0.12 μmol/L. The Michaelis-Menten constant KMapp value was estimated to be 0.3 mmol/L. The resulting biosensor exhibited fast amperometric response, and good stability, reproducibility, and selectivity to H2O2.


Biosensor myoglobin gold nanoparticles carbon spheres hydrogen peroxide direct electron transfer 


  1. [1]
    Rusling, J. F.; Nassar, A. E. F. Enhanced electron-transfer for myglobin in surfactant films on electrodes. J. Am. Chem. Soc. 1993, 115, 11891–11897.CrossRefGoogle Scholar
  2. [2]
    Nassar, A. E. F.; Bobbitt, J. M.; Stuart, J. D.; Rusling, J. F. Catalytic reduction of organohalide pollutants by myoglobin in a biomembrane-like surfactant film. J. Am. Chem. Soc. 1995, 117, 10986–10993.CrossRefGoogle Scholar
  3. [3]
    Zhao, G. C.; Zhang, L.; Wei, X. W.; Yang, Z. S. Myoglobin on multi-walled carbon nanotubes modified electrode: Direct electrochemistry and electrocatalysis. Electrochem. Commun. 2003, 5, 825–829.CrossRefGoogle Scholar
  4. [4]
    Cai, C. X.; Chen, J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem. 2004, 325, 285–292.PubMedCrossRefGoogle Scholar
  5. [5]
    Zhou, H. H.; Chen, H.; Luo, S. L.; Chen, J. H.; Wei, W. Z.; Kuang, Y. F. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosens. Bioelectron. 2005, 20, 1305–1311.PubMedCrossRefGoogle Scholar
  6. [6]
    Zhang, L.; Jiang, X.; Niu, L.; Dong, S. J. Syntheses of fully sulfonated polyaniline nano-networks and its application to the direct electrochemistry of cytochrome c. Biosens. Bioelectron. 2006, 21, 1107–1115.PubMedCrossRefGoogle Scholar
  7. [7]
    Zhang, L.; Zhang, Q.; Li, J. H. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic-organic hybrid film. Electrochem. Commun. 2007, 9, 1530–1535.CrossRefGoogle Scholar
  8. [8]
    Liu, X. Q.; Shi, L. H.; Niu, W. X.; Li, H. J.; Xu, G. B. Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens. Bioelectron. 2008, 23, 1887–1890.PubMedCrossRefGoogle Scholar
  9. [9]
    Sotiropoulou, S.; Chaniotakis, N. A. Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 2003, 375, 103–105.PubMedGoogle Scholar
  10. [10]
    Banks, C. E.; Compton, R. G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: An edge plane pyrolytic graphite electrode study. Analyst 2005, 130, 1232–1239.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Wang, J. Stripping analysis at bismuth electrodes: A review. Electroanalysis 2005, 17, 1341–1346.CrossRefGoogle Scholar
  12. [12]
    Vamvakaki, V.; Tsagaraki, K.; Chaniotakis, N. Carbon nanofiber-based glucose biosensor. Anal. Chem. 2006, 78, 5538–5542.PubMedCrossRefGoogle Scholar
  13. [13]
    Lu, X. B.; Zhou, J. H.; Lu, W.; Liu, Q.; Li, J. H. Carbon nanofiber-based composites for the construction of mediator free biosensors. Biosens. Bioelectron. 2008, 23, 1236–1243.PubMedCrossRefGoogle Scholar
  14. [14]
    Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. 2004, 116, 607–611.CrossRefGoogle Scholar
  15. [15]
    Balasubramanian, K.; Burghard, M. Electrochemically functionalized carbon nanotubes for device applications. Small 2005, 1, 180–192.PubMedCrossRefGoogle Scholar
  16. [16]
    Cui, R. J.; Liu, C.; Shen, J. M.; Gao, D.; Zhu, J. J.; Chen, H. Y. Gold nanoparticle-colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 2008, 18, 2197–2204.CrossRefGoogle Scholar
  17. [17]
    Stargardt, J. F.; Hawkridge, F. M.; Landrum, H. L. Reversible heterogenous reduction and oxidation of sperm whale myoglobin at a surface modified gold minigrid electrode. Anal. Chem. 1978, 50, 930–932.PubMedCrossRefGoogle Scholar
  18. [18]
    Hildebrand, D. P.; Tang, H. L.; Luo, Y. G.; Hunter, C. L.; Smith, M.; Brayer, G. D.; Mauk, A. G. Efficient coupled oxidation of heme by an active site variant of horse heart myoglobin. J. Am. Chem. Soc. 1996, 118, 12909–12915.CrossRefGoogle Scholar
  19. [19]
    Yabuki, S.; Shinohara, H.; Aizawa, M. Electro-conductive enzyme membrane. J. Chem. Soc. Chem. Commun. 1989, 945–946.Google Scholar
  20. [20]
    Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28.CrossRefGoogle Scholar
  21. [21]
    Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 1958, 181, 622–666.CrossRefGoogle Scholar
  22. [22]
    Leitch, F. A.; Moore, G. R.; Pettigrew, G. W. Structural basis for the variation of pH-dependent redox potentials of Pseudomonas cytochromes C-551. Biochem. 1984, 23, 1831–1838.CrossRefGoogle Scholar
  23. [23]
    Wyman, J. Regulation in macromolecules, as illustrated by hemoglobin. Quart. Rev. Biophys. 1968, 35–80.Google Scholar
  24. [24]
    Bond, A. M. Modern Polarographic Methods in Analytical Chemistry. M. Dekker: New York, 1980, pp. 27–45.Google Scholar
  25. [25]
    Yamazaki, I.; Araiso, T.; Hayashi, Y.; Yamada, H.; Makino, R. Analysis of acid-base properties of peroxidase and myoglobin. Adv. Biophys. 1978, 11, 249–281.PubMedGoogle Scholar
  26. [26]
    Tatsuma, T.; Mori, H.; Fujishima, A. Electron transfer from diamond electrodes to heme peptide and peroxidase. Anal. Chem. 2000, 72, 2919–2924.PubMedCrossRefGoogle Scholar
  27. [27]
    Kamin, R. A.; Wilson, G. S. Rotating-ring-disk enzyme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer. Anal. Chem. 1980, 52, 1198–1205.CrossRefGoogle Scholar
  28. [28]
    Zhao, Y. D.; Bi, Y. H.; Zhang, W. D.; Luo, Q. M. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta 2005, 65, 489–494.PubMedCrossRefGoogle Scholar
  29. [29]
    Zhao, X. J.; Mai, Z. B.; Kang, X. H.; Dai, Z.; Zou, X.Y. Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin. Electrochim. Acta 2008, 53, 4732–4739.CrossRefGoogle Scholar
  30. [30]
    Zong, S. Z.; Cao, Y.; Zhou, Y. M.; Ju, H. X. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens. Bioelectron. 2007, 22, 1776–1782.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Xiao Chen
    • 1
  • Jing Jing Zhang
    • 1
  • Jie Xuan
    • 1
  • Jun Jie Zhu
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations