Nano Research

, Volume 2, Issue 3, pp 192–200 | Cite as

Facile, noncovalent decoration of graphene oxide sheets with nanocrystals

  • Ganhua Lu
  • Shun Mao
  • Sungjin Park
  • Rodney S. Ruoff
  • Junhong Chen
Open Access
Research Article

Abstract

Facile dry decoration of graphene oxide sheets with aerosol Ag nanocrystals synthesized from an arc plasma source has been demonstrated using an electrostatic force directed assembly technique at room temperature. The Ag nanocrystal-graphene oxide hybrid structure was characterized by transmission electron microscopy (TEM) and selected area diffraction. The ripening of Ag nanocrystals on a graphene oxide sheet was studied by consecutive TEM imaging of the same region on a sample after heating in Ar at elevated temperatures of 100 °C, 200 °C, and 300 °C. The average size of Ag nanocrystals increased and the number density decreased after the annealing process. In particular, migration and coalescence of Ag nanocrystals were observed at a temperature as low as 100 °C, suggesting a van der Waals interaction between the Ag nanocrystal and the graphene oxide sheet. The availability of affordable graphene-nanocrystal structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications.

Keywords

Graphene oxide silver nanocrystals hybrid nanostructures nanocrystal ripening 

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.PubMedCrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.PubMedCrossRefGoogle Scholar
  4. [4]
    Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.CrossRefGoogle Scholar
  5. [5]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.PubMedCrossRefGoogle Scholar
  6. [6]
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.PubMedCrossRefADSGoogle Scholar
  8. [8]
    Semenov, Y. G.; Kim, K. W.; Zavada, J. M. Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 2007, 91, 153105.Google Scholar
  9. [9]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Wang, S. G.; Wang, J. J.; Miraldo, P.; Zhu, M. Y.; Outlaw, R.; Hou, K.; Zhao, X.; Holloway, B. C.; Manos, D.; Tyler, T.; Shenderova, O.; Ray, M.; Dalton, J.; McGuire, G. High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 2006, 89, 183103.Google Scholar
  12. [12]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Qazi, M.; Vogt, T.; Koley, G. Trace gas detection using nanostructured graphite layers. Appl. Phys. Lett. 2007, 91, 233101.Google Scholar
  14. [14]
    Qazi, M.; Vogt, T.; Koley, G. Two-dimensional signatures for molecular identification. Appl. Phys. Lett. 2008, 92, 103120.Google Scholar
  15. [15]
    Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. P. Natl. Acad. Sci. USA 2005, 102, 10439–10444.CrossRefADSGoogle Scholar
  16. [16]
    Park, N.; Hong, S.; Kim, G.; Jhi, S. H. Computational study of hydrogen storage characteristics of covalentbonded graphenes. J. Am. Chem. Soc. 2007, 129, 8999–9003.PubMedCrossRefGoogle Scholar
  17. [17]
    Boukhvalov, D. W.; Katsnelson, M. I.; Lichtenstein, A. I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 2008, 77, 035427.Google Scholar
  18. [18]
    Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.PubMedCrossRefGoogle Scholar
  19. [19]
    Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.PubMedCrossRefGoogle Scholar
  20. [20]
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.PubMedCrossRefGoogle Scholar
  21. [21]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  22. [22]
    Fissan, H.; Kennedy, M. K.; Krinke, T. J.; Kruis, F. E. Nanoparticles from the gas phase as building blocks for electrical devices. J. Nanopart. Res. 2003, 5, 299–310.CrossRefGoogle Scholar
  23. [23]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefADSGoogle Scholar
  24. [24]
    Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, II; Blake, P.; Booth, T. J.; Jiang, D.; Giesbers, J.; Hill, E. W.; Geim, A. K. Electronic properties of graphene. Phys. Status Solidi B-Basic Solid State Phys. 2007, 244, 4106–4111.CrossRefGoogle Scholar
  25. [25]
    Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.CrossRefGoogle Scholar
  26. [26]
    Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.PubMedCrossRefGoogle Scholar
  27. [27]
    Chen, J. H.; Lu, G. H. Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 2006, 17, 2891–2894.CrossRefADSGoogle Scholar
  28. [28]
    Lu, G. H.; Zhu, L. Y.; Wang, P. X.; Chen, J. H.; Dikin, D. A.; Ruoff, R. S.; Yu, Y.; Ren, Z. F. Electrostatic-force-directed assembly of Ag nanocrystals onto vertically aligned carbon nanotubes. J. Phys. Chem. C 2007, 111, 17919–17922.CrossRefGoogle Scholar
  29. [29]
    Zhu, L. Y.; Lu, G. H.; Chen, J. H. A generic approach to coat carbon nanotubes with nanoparticles for potential energy applications. J. Heat Transf. -Trans. ASME 2008, 130, 044502.Google Scholar
  30. [30]
    Liu, M.; Lu, G. H.; Chen, J. H. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal carbon nanotube hybrid structures. Nanotechnology 2008, 19, 265705.Google Scholar
  31. [31]
    Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J. H.; Chen, D. M.; Ruoff, R. S. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide. Science 2008, 321, 1815–1817.PubMedCrossRefADSGoogle Scholar
  32. [32]
    Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.CrossRefGoogle Scholar
  33. [33]
    He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56.CrossRefADSGoogle Scholar
  34. [34]
    Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.CrossRefGoogle Scholar
  35. [35]
    Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.CrossRefGoogle Scholar
  36. [36]
    Chen, J. H.; Lu, G. H.; Zhu, L. Y.; Flagan, R. C. A simple and versatile mini-arc plasma source for nanocrystal synthesis. J. Nanopart. Res. 2007, 9, 203–213.CrossRefGoogle Scholar
  37. [37]
    Mao, S.; Lu, G. H.; Chen, J. H. Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field. Nanotechnology 2008, 19, 455610.Google Scholar
  38. [38]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.PubMedCrossRefADSGoogle Scholar
  39. [39]
    Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon nanotubes: Synthesis, structure, properties, and applications; Springer: Berlin, New York, 2001.Google Scholar
  40. [40]
    Morgenstern, K.; Rosenfeld, G.; Comsa, G. Local correlation during Ostwald ripening of two-dimensional islands on Ag(111). Surf. Sci. 1999, 441, 289–300.CrossRefADSGoogle Scholar
  41. [41]
    Meyer, R.; Ge, Q. F.; Lockemeyer, J.; Yeates, R.; Lemanski, M.; Reinalda, D.; Neurock, M. An ab initio analysis of adsorption and diffusion of silver atoms on alumina surfaces. Surf. Sci. 2007, 601, 134–145.CrossRefADSGoogle Scholar
  42. [42]
    Byon, E.; Oates, T. W. H.; Anders, A. Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition. Appl. Phys. Lett. 2003, 82, 1634–1636.CrossRefADSGoogle Scholar
  43. [43]
    Zhu, L. Y.; Lu, G. H.; Mao, S.; Chen, J. H.; Dikin, D. A.; Chen, X. Q.; Ruoff, R. S. Ripening of silver nanoparticles on carbon nanotubes. Nano 2007, 2, 149–156.CrossRefGoogle Scholar
  44. [44]
    Gangopadhyay, P.; Magudapathy, P.; Kesavamoorthy, R.; Panigrahi, B. K.; Nair, K. G. M.; Satyam, P. V. Growth of silver nanoclusters embedded in soda glass matrix. Chem. Phys. Lett. 2004, 388, 416–421.CrossRefADSGoogle Scholar
  45. [45]
    Heilmann, A.; Werner, J. In situ observation of microstructural changes of embedded silver particles. Thin Solid Films 1998, 317, 21–26.CrossRefGoogle Scholar
  46. [46]
    Wynblatt, P.; Gjostein, N. A. Supported metal crystallites. Prog. Solid State Chem. 1975, 9, 21–58.CrossRefGoogle Scholar
  47. [47]
    Wynblatt, P.; Gjostein, N. A. Particle growth in model supported metal catalysts-I Theory. Acta Metallurgica 1976, 24, 1165–1174.CrossRefGoogle Scholar
  48. [48]
    Datye, A. K.; Xu, Q.; Kharas, K. C.; McCarty, J. M. Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? Catal. Today 2006, 111, 59–67.CrossRefGoogle Scholar
  49. [49]
    Manard, M. J.; Kemper, P. R.; Bowers, M. T. Binding interactions of mono- and diatomic silver cations with small alkenes: Experiment and theory. Int. J. Mass Spectrom. 2005, 241, 109–117.CrossRefGoogle Scholar
  50. [50]
    Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr., C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  51. [51]
    Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett. 2008, 8, 4283–4287.CrossRefGoogle Scholar
  52. [52]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Ganhua Lu
    • 1
  • Shun Mao
    • 1
  • Sungjin Park
    • 2
  • Rodney S. Ruoff
    • 2
  • Junhong Chen
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Mechanical Engineering and the Texas Materials InstituteUniversity of Texas at AustinAustinUSA

Personalised recommendations