Nano Research

, Volume 2, Issue 2, pp 151–160 | Cite as

Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section

  • Zhengtao Deng
  • Dong Chen
  • Fangqiong Tang
  • Jun Ren
  • Anthony J. Muscat
Open Access
Research Article

Abstract

Single-crystalline orthorhombic antimony trioxide (Sb2O3) nanobelts with unique elliptical cross sections and purple-blue photoluminescence have been synthesized. The uniform Sb2O3 nanobelts are 400–600 nm in width, 20–40 nm in thickness at the center and gradually become thinner to form sharp edges sub-5 nm in size, tens of micrometers in length, and with [001] as the preferential growth direction. Self-assembly of tens of nanobelts into three-dimensional (3-D) flower-like nanostructures has been observed. Analysis was performed by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The Sb2O3 nanobelts display intense purple-blue photoluminescence centred at 425 nm (∼2.92 eV). The successful synthesis of nanobelts with elliptical cross sections may cast new light on the investigation of the property differences between nanobelts with rectangular cross sections and those with other cross section geometries. The Sb2O3 nanobelts can be used as effective purple-blue light emitters and may also be valuable for future nanodevice design.

Keywords

Antimony trioxide nanobelts elliptical cross section purple-blue photoluminescence 

Supplementary material

12274_2009_9014_MOESM1_ESM.pdf (395 kb)
Supplementary material, approximately 396 KB.

References

  1. [1]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Shi, W.; Peng, H.; Wang, N.; Li, C. P.; Xu, L.; Lee, C. S.; Kalish, R.; Lee, S. T. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc. 2001, 123, 11095–11096.CrossRefPubMedGoogle Scholar
  3. [3]
    Yu, Y.; Wang, R. H.; Chen, Q.; Peng, L. M. High-quality ultralong Sb2S3 nanoribbons on large scale. J. Phys. Chem. B 2005, 109, 23312–23315.CrossRefPubMedGoogle Scholar
  4. [4]
    Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L. La(OH)3 and La2O3 nanobelts—Synthesis and physical properties. Adv. Mater. 2007, 19, 470–474.CrossRefGoogle Scholar
  5. [5]
    Arnold, M. S.; Avouris, P.; Wang, Z. L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 2003, 107, 659–663.CrossRefGoogle Scholar
  6. [6]
    Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.CrossRefADSGoogle Scholar
  7. [7]
    Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dualmode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806–4808.CrossRefADSGoogle Scholar
  8. [8]
    Hughes, W.; Wang, Z. L. Nanobelts as nanocantilevers. Appl. Phys. Lett. 2003, 82, 2886–2888.CrossRefADSGoogle Scholar
  9. [9]
    Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. ZnO nanoribbon microcavity lasers. Adv. Mater. 2003, 15, 1907–1911.CrossRefGoogle Scholar
  10. [10]
    Xiong, Q. H.; Wang, J. G.; Reese, O.; Voon, L. C. L. Y.; Eklund, P. C. Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett. 2004, 4, 1991–1996.CrossRefADSGoogle Scholar
  11. [11]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Chemistry and physics of nanowires. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  12. [12]
    Gao, P.; Wang, Z. L. Self-Assembled nanowire-nanoribbon junction arrays of ZnO. J. Phys. Chem. B 2002, 106, 12653–12658.CrossRefGoogle Scholar
  13. [13]
    Lao, J. Y.; Wen, G. J.; Ren, Z. F. Hierarchical ZnO nanostructures. Nano Lett. 2002, 2, 1287–1291.CrossRefADSGoogle Scholar
  14. [14]
    Liu, B.; Zeng, H. C. Fabrication of ZnO “dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.CrossRefPubMedGoogle Scholar
  15. [15]
    Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale. Chem. Commun. 2005, 918–920.Google Scholar
  16. [16]
    Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X. M.; Li, F. Q. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J. Phys. Chem. B 2006, 110, 11704–11710.CrossRefPubMedGoogle Scholar
  17. [17]
    Guo, L.; Wu, Z. H.; Liu, T.; Wang, W. D.; Zhu, H. S. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett. 2000, 318, 49–52.CrossRefADSGoogle Scholar
  18. [18]
    Friedrichs, S.; Meyer, R. R.; Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Complete characterisation of a Sb2O3/(21,−8)SWNT inclusion composite. Chem. Commun. 2001, 929–930.Google Scholar
  19. [19]
    Ye, C. H.; Meng, G. W.; Zhang, L. D.; Wang, G. Z.; Wang, Y. H. A facile vapor solid synthetic route to Sb2O3 fibrils and tubules. Chem. Phys. Lett. 2002, 363, 34–38.CrossRefADSGoogle Scholar
  20. [20]
    Zhang, Y. X.; Li, G. H.; Zhang, J.; Zhang, L. D. Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology 2004, 15, 762–765.CrossRefADSGoogle Scholar
  21. [21]
    Chen, X. Y.; Wang, X.; An, C. H.; Liu, J. W.; Qian, Y. T. Synthesis of Sb2O3 nanorods under hydrothermal conditions. Mater. Res. Bull. 2005, 40, 469–474.CrossRefGoogle Scholar
  22. [22]
    Christian, P.; O’Brien, P. The preparation of antimony chalcogenide and oxide nanomaterials. J. Mater. Chem. 2005, 15, 4949–4954.CrossRefGoogle Scholar
  23. [23]
    Sendor, D.; Weirich, T.; Simon, U. Transformation of nanoporous oxoselenoantimonates into Sb2O3-nanoribbons and nanorods. Chem. Commum. 2005, 5790–5792.Google Scholar
  24. [24]
    Deng, Z. T.; Tang F. Q.; Chen D.; Meng X. W.; Cao, L.; Zou. B. S. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J. Phys. Chem. B 2006, 110, 18225–18230.CrossRefPubMedGoogle Scholar
  25. [25]
    Chand, N.; Verma, S. Surface and strength properties of PVC-Sb2O3 flame retardant coated sunhemp fiber. J. Fire Sci. 1991, 9, 251–258.CrossRefGoogle Scholar
  26. [26]
    Sato, H.; Kondo, K.; Tsuge, S.; Ohtani, H.; Sato, N. Mechanisms of thermal degradation of a polyester flameretarded with antimony oxide/brominated polycarbonate studied by temperature-programmed analytical pyrolysis. Polym. Degrad. Stab. 1998, 62, 41–48.CrossRefGoogle Scholar
  27. [27]
    Liu, H. H.; Iwasawa, Y. Unique performance and characterization of a crystalline SbRe2O6 catalyst for selective ammoxidation of isobutane. J. Phys. Chem. B 2002, 106, 2319–2329.CrossRefGoogle Scholar
  28. [28]
    Ha, Y.; Wang, M. Capillary melt method for micro antimony oxide pH electrode. Electroanalysis 2006, 18, 1121–1125.CrossRefGoogle Scholar
  29. [29]
    Deng, Z. T.; Chen, D.; Tang, F. Q.; Meng, X. W.; Ren, J.; Zhang, L. Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: End-to-end versus side-by-side. J. Phys. Chem. C. 2007, 111, 5325–5330.CrossRefGoogle Scholar
  30. [30]
    Deng, Z. T.; Peng, B.; Chen, D.; Tang, F. Q.; Muscat, A. J. A new route to self-assembled tin dioxide nanospheres: Fabrication and characterization. Langmuir; 2008, 24, 11089–11095.CrossRefPubMedGoogle Scholar
  31. [31]
    Deng, Z. T.; Chen, D.; Peng, B.; Tang, F. Q. From bulk metal Bi to two-dimensional well-crystallized BiOX (X=Cl, Br) micro- and nanostructures: Synthesis and characterization. Cryst. Growth Des. 2008, 8, 2995–3003.CrossRefGoogle Scholar
  32. [32]
    Deng, Z. T.; Tang, F. Q.; Muscat, A. J. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology 2008, 19, 295705.CrossRefGoogle Scholar
  33. [33]
    Wagner, C. D. Sensitivity factors for XPS analysis of surface atoms. J. Electron Spectrosc. Relat. Phenom. 1983, 32, 99–102.CrossRefGoogle Scholar
  34. [34]
    Moulder, J.; Stickie, W.; Sobal, P.; Bomber, K. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer: Eden Prairie, MN, 1992.Google Scholar
  35. [35]
    Liu, K. S.; Zhai, J.; Jiang, L. Fabrication and characterization of superhydrophobic Sb2O3 films. Nanotechnology, 2008, 19, 165604.Google Scholar
  36. [36]
    Cody, C. A.; DiCarlo, L.; Darlington, R. K. Vibrational and thermal study of antimony oxides. Inorg. Chem. 1979, 18, 1572–1576.CrossRefGoogle Scholar
  37. [37]
    Mestl, G.; Ruiz, P.; Delmon, B.; Knozinger, H. Sb2O3/Sb2O4 in reducing/oxidizing environments: An in situ Raman spectroscopy study. J. Phys. Chem. 1994, 11276–11282.Google Scholar
  38. [38]
    Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.CrossRefPubMedGoogle Scholar
  39. [39]
    Mayers, B.; Gates, B.; Yin, Y. D.; Xia, Y. N. Large-scale synthesis of monodispersed nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv. Mater. 2001, 13, 1380–1384.CrossRefGoogle Scholar
  40. [40]
    Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936–940.CrossRefGoogle Scholar
  41. [41]
    Che, R, C.; Peng, L. M.; Zhou, W. Z. Synthesis and characterization of crystalline microporous cobalt phosphite nanowires. Appl. Phys. Lett. 2005, 87, 173122.CrossRefADSGoogle Scholar
  42. [42]
    Hsu, J. W. P.; Tallant, D. R.; Simpson, R. L.; Missert, N. A.; Copel, R. G. Luminescent properties of solution-grown ZnO nanorods. Appl. Phys. Lett. 2006, 88, 252103.Google Scholar
  43. [43]
    Her, Y. C.; Wu, J. Y.; Lin, Y. R.; Tsai, S. Y. Lowtemperature growth and blue luminescence of SnO2 nanoblades. Appl. Phys. Lett. 2006, 89, 043115.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Zhengtao Deng
    • 1
    • 2
    • 3
  • Dong Chen
    • 1
  • Fangqiong Tang
    • 1
  • Jun Ren
    • 1
  • Anthony J. Muscat
    • 2
  1. 1.Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Chemical and Environmental EngineeringThe University of ArizonaTucsonUSA
  3. 3.College of Optical ScienceThe University of ArizonaTucsonUSA

Personalised recommendations