Nano Research

, Volume 1, Issue 5, pp 434–439 | Cite as

Direct evidence for lip-lip interactions in multi-walled carbon nanotubes

Open Access
Research Article


The stability of open edged multi-walled carbon nanotubes has been investigated by using in situ high resolution transmission electron microscopy at elevated temperatures. Formation of inter-shell structures was experimentally observed for the first time and attributed to a robust interaction between adjacent concentric shells (so-called lip-lip interaction). The fl uctuating behavior of the inter-shell structures suggests a mechanism by which the carbon atoms can pass in or out through the inter-shell edges during carbon nanotube growth or shrinkage processes.


Multi-walled carbon nanotubes lip-lip interaction in situ transmission electron microscopy 


  1. [1]
    Fischer, J. E. Carbon nanotubes: A nanostructured material for energy storage. Chem. Innov. 2000, 30, 21–27.Google Scholar
  2. [2]
    Iijima, S. Helical mirotubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  3. [3]
    Iijima, S.; Ajayan, P. M.; Ichihashi, T. Growth model for carbon nanotubes. Phys. Rev. Lett. 1992, 69, 3100–3103.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Jin, C. H.; Suenaga, K.; Iijima, S. How does a carbon nanotube grow? An in situ investigation on the cap evolution. ACS Nano 2008, 6, 1275–1279.CrossRefGoogle Scholar
  5. [5]
    Guo, T.; Nikolaev, P.; Rinzer, A. G.; Tomanek, D.; Bolbert, D. T.; Smalley, R. E. Self-assembly of tubular fullerenes. J. Phys. Chem. 1995, 99, 10694–10697.CrossRefGoogle Scholar
  6. [6]
    Charlier, J. C.; Vita, A. D.; Blase, X.; Car, R. Microscopic growth mechanisms for carbon nanotubes. Science 1997, 275, 647–649.CrossRefGoogle Scholar
  7. [7]
    Kwon, Y. K.; Lee, Y. H.; Kim, S. G.; Jund, P.; Tomanek, D.; Smalley, R. E. Morphology and stability of growing multiwall carbon nanotubes. Phys. Rev. Lett. 1997, 79, 2065–2068.CrossRefADSGoogle Scholar
  8. [8]
    Nardelli, M. B.; Brabec, C.; Maiti, A.; Rolan, C.; Bernholc, J. Lip-lip interactions and the growth of multiwalled carbon nanotubes. Phys. Rev. Lett. 1998, 80, 313–316.CrossRefADSGoogle Scholar
  9. [9]
    Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Huang, J. Y.; Chen, S.; Jo, S. H.; Wang, Z.; Han, D. X.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 236802.Google Scholar
  11. [11]
    Jin, C. H.; Suenaga, K.; Iijima, S. Plumbing carbon nanotubes. Nat. Nanotechnol. 2008, 3, 17–21.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Huang, J. Y.; Ding, F.; Yakobson, B. I. Dislocation dynamics in multiwalled carbon nanotubes at high temperature. Phys. Rev. Lett. 2008, 100, 035503.Google Scholar
  13. [13]
    Huang, J. Y.; Ding, F.; Jiao, K.; Yakobson, B. I. Self-templated growth of carbon-nanotube walls at high temperatures. Small 2007, 3, 1735–1739.CrossRefPubMedGoogle Scholar
  14. [14]
    Iijima, S.; Ichihashi, T.; Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 1992, 356, 776–778.CrossRefADSGoogle Scholar
  15. [15]
    Hashimoto, A.; Suenaga, K.; Urita, K.; Shimada, T.; Sugai, T.; Bandow, S.; Shinohara, H.; Iijima, S. Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 045504.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Nanotube Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations