Nano Research

, Volume 1, Issue 5, pp 361–394 | Cite as

Charge transport in disordered graphene-based low dimensional materials

  • Alessandro Cresti
  • Norbert Nemec
  • Blanca Biel
  • Gabriel Niebler
  • François Triozon
  • Gianaurelio Cuniberti
  • Stephan Roche
Open Access
Review Article

Abstract

Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. Although these systems share a similar underlying electronic structure, whose exact details depend on confinement effects, crucial differences emerge when disorder comes into play. In this review, we consider the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. After summarizing the electronic and transport properties of defect-free systems, we focus on the effects of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.

Keywords

Graphene charge transport carbon nanotubes 

References

  1. [1]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.Google Scholar
  2. [2]
    Loiseau, A.; Launois, P.; Petit, P., Roche, S.; Salvetat, J.-P. Understanding Carbon Nanotubes from Basics to Applications; Lecture Notes in Physics, Vol. 677; Springer-Verlag: Berlin, Heidelberg, 2006.MATHGoogle Scholar
  3. [3]
    Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Springer-Verlag: Berlin, Heidelberg, 2007.Google Scholar
  4. [4]
    Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.CrossRefADSGoogle Scholar
  5. [5]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Filrsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y.-W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 2006, 96, 136806.Google Scholar
  9. [9]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Öezyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. Lett. 2007, 91, 192107.Google Scholar
  11. [11]
    Öezyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov, L. S.; Kim, P. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 2007, 99, 166804.Google Scholar
  12. [12]
    Jiang, Z; Zhang, Y; Stormer, H. L.; Kim, P. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 2007, 99, 106802.Google Scholar
  13. [13]
    Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Wu, X.; Li, X.; Song, Z.; Berger, C.; de Heer, W. A. Weak antilocalization in epitaxial graphene: Evidence for chiral electrons. Phys. Rev. Lett. 2007, 98, 136801.Google Scholar
  15. [15]
    Castro Neto, A. H; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. arXiv:0709.1163v2. Google Scholar
  16. [16]
    Dayen, J.-F.; Mahmood, A.; Golubev, D. S.; Roch-Jeune, I.; Salles, P.; Dujardin, E. Side-gated transport in FIB-fabricated multilayered graphene nanoribbons. arXiv:0712.2314v2, 2008.Google Scholar
  17. [17]
    Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A graphene field-effect device. IEEE Elect. Dev. L. 2007, 28, 282–284.CrossRefADSGoogle Scholar
  18. [18]
    Han, M. Y.; Öezyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.Google Scholar
  19. [19]
    Chen, Z.; Lin, Y.-M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.CrossRefADSGoogle Scholar
  20. [20]
    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H. Graphene field-effect devices. Eur. Phys. J. Special Topics 2007, 148, 19–26.CrossRefADSGoogle Scholar
  21. [21]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer Phys. Rev. Lett. 2008, 100, 016602.Google Scholar
  22. [22]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.CrossRefADSGoogle Scholar
  24. [24]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505.CrossRefADSGoogle Scholar
  26. [26]
    McClure, J. W. Diamagnetism of graphite. Phys. Rev. 1956, 104, 666–671.CrossRefADSGoogle Scholar
  27. [27]
    Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954.Google Scholar
  28. [28]
    Wakabayashi, K.; Fujita, M; Ajiki, H.; Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 1999, 59, 8271–8282.CrossRefADSGoogle Scholar
  29. [29]
    Wakabayashi, K. Theory of ballistic electron emission microscopy. Phys. Rev. B 2001, 64, 125408.Google Scholar
  30. [30]
    Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 2006, 73, 045432.Google Scholar
  31. [31]
    Peres, N. M. R; Castro Neto, A. H.; Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 2006, 73, 195411.Google Scholar
  32. [32]
    Brey, L.; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.Google Scholar
  33. [33]
    Muñoz-Rojas F.; Jacob, D.; Fernádez-Rossier, J.; Palacios, J. J. Coherent transport in graphene nanoconstrictions. Phys. Rev. B 2006, 74, 195417.Google Scholar
  34. [34]
    Wang, Z. F.; Li, Q.; Zheng, H.; Ren, H.; Su, H.; Shi, Q. W.; Chen, J. Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study. Phys. Rev. B 2007, 75, 113406.Google Scholar
  35. [35]
    Zheng, H.; Wang, Z. F.; T. Luo, T.; Shi, Q. W.; Chen, J. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 2007, 75, 165414.Google Scholar
  36. [36]
    Areshkin, D. A.; Gunlycke, D.; White, C. T. Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett. 2007, 7, 204–210.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Gunlycke, D.; Areshkin, D. A.; White, C. T. Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 2007, 90, 142104.Google Scholar
  38. [38]
    Gunlycke, D.; Lawler, H. M.; White, C. T. Roomtemperature ballistic transport in narrow graphene strips. Phys. Rev. B 2007, 75, 085418.Google Scholar
  39. [39]
    Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.CrossRefADSGoogle Scholar
  40. [40]
    Fabrizio, M.; Parola, A.; Tosatti, E. Strong-coupling phases of two Hubbard chains with interchain hopping. Phys. Rev. B 1992, 46, 3159–3162.CrossRefADSGoogle Scholar
  41. [41]
    Gopalan, S.; Rice, T. M.; Sigrist, M. Spin ladders with spin gaps: A description of a class of cuprates. Phys. Rev. B 1994, 49, 8901–8910.CrossRefADSGoogle Scholar
  42. [42]
    Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2917–2920.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Kim, G.; Lee, S. B.; Kim, T.-S.; Ihm, J. Fano resonance and orbital filtering in multiply connected carbon nanotubes. Phys. Rev. B 2005, 71, 205415.Google Scholar
  44. [44]
    Kim, G.; Jeong, B. W.; Ihm, J. Deep levels in the band gap of the carbon nanotube with vacancy-related defects Appl. Phys. Lett. 2006, 88, 193107.Google Scholar
  45. [45]
    Zhou, T.; Wu, J.; Duan, W.; Gu, B.-L. Physical mechanism of transport blocking in metallic zigzag carbon nanotubes. Phys. Rev. B 2007, 75, 205410.Google Scholar
  46. [46]
    Sánchez-Portal, D.; Ordejón, P.; Artacho, E.; Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 1997, 65, 453–461.CrossRefGoogle Scholar
  47. [47]
    Malysheva, L.; Onipko, A. Spectrum of π electrons in graphene as a macromolecule. Phys. Rev. Lett. 2008, 100, 186806.Google Scholar
  48. [48]
    Cresti, A.; Grosso G.; Pastori Parravicini, G. Electronic states and magnetotransport in unipolar and bipolar graphene ribbons. Phys. Rev. B 2008, 77, 115408.Google Scholar
  49. [49]
    Sutton, A.P. Electronic Structure of Materials; Clarendon Press: Oxford, 1994, p. 41.Google Scholar
  50. [50]
    Rycerz, A.; Tworzydło, J.; Beenaker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.CrossRefGoogle Scholar
  51. [51]
    Akhmerov, A. R.; Bardarson, J. H.; Rycerz, A.; Beenaker, C. W. J. Theory of the valley-valve effect in graphene nanoribbons. Phys. Rev. B 2008, 77, 205416.Google Scholar
  52. [52]
    Li, Z.; Qian, H.; Wu, J.; Gu, B.-L.; Duan, W. Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys. Rev. Lett. 2008, 100, 206802.Google Scholar
  53. [53]
    Cresti, A.; Grosso, G.; Pastori Parravicini, G. Valleyvalve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B 2008, 77, 233402.Google Scholar
  54. [54]
    Cresti, A; Grosso, G.; Pastori Parravicini, G. Field-effect resistance of gated graphitic polymeric ribbons: Numerical simulations. Phys. Rev. B 2008, 78, 115433.Google Scholar
  55. [55]
    Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 1999, 59, 9858–9861.CrossRefADSGoogle Scholar
  56. [56]
    Kawai, T.; Miyamoto, Y.; Sugino, O.; Koga, Y. Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B 2000, 62, R16349.Google Scholar
  57. [57]
    Son, Y.-W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefPubMedADSGoogle Scholar
  58. [58]
    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons Nano Lett. 2006, 6, 2748–2754.CrossRefPubMedADSGoogle Scholar
  59. [59]
    Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.Google Scholar
  60. [60]
    White, C. T.; Li, J.; Gunlycke, D.; Mintmire, J. W. Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 2007, 7, 825–830.CrossRefPubMedADSGoogle Scholar
  61. [61]
    Fujita, M.; Igami, M.; Nakada, K. Lattice distortion in nanographite ribbons. J. Soc. Phys. Jpn. 1997, 66, 1864–1867.CrossRefADSGoogle Scholar
  62. [62]
    Sasaki, K.; Murakami, S.; Saito, R. Stabilization mechanism of edge states in graphene. Appl. Phys. Lett. 2006, 88, 113110.Google Scholar
  63. [63]
    Gunlycke, D.; White, C. T. Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys. Rev. B 2008, 77, 115116.Google Scholar
  64. [64]
    Klusek, Z.; Waqar, Z.; Denisov, E. A.; Kompaniets, T. N.; Makarenko, I. W.; Titkov, A. N.; Bhatti, A. S. Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surf. Sci. 2000, 161, 508–514.CrossRefADSGoogle Scholar
  65. [65]
    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy studies of graphite edges. Appl. Surf. Sci. 2005, 241, 43–48.CrossRefADSGoogle Scholar
  66. [66]
    Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.Google Scholar
  67. [67]
    Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.MATHCrossRefADSGoogle Scholar
  68. [68]
    Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón P. Tight-binding description of graphene. Phys. Rev. B 2002, 66, 035412.Google Scholar
  69. [69]
    Grüneis, A.; Attaccalite, C.; Wirtz, L.; Shiozawa, H.; Saito, R.; Pichler, T.; Rubio, A. Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. arXiv:0808.1467v2, 2008.Google Scholar
  70. [70]
    Fiori, G.; Iannaccone, G. Simulation of graphene nanoribbon field-effect transistors. IEEE Elect. Dev. L. 2007, 28, 760–762.CrossRefADSGoogle Scholar
  71. [71]
    Sun, L.; Li, Q.; Ren, H.; Shi, Q. W.; Yang, J.; Hou, J. G. Strain effect on energy gaps of armchair graphene nanoribbons. arXiv:cond-mat/0703795, 2007.Google Scholar
  72. [72]
    Gunlycke, D.; Areshkin, D. A.; Li, J.; Mintmire, J. W.; White, C. T. Graphene nanostrip digital memory device. Nano Lett. 2007, 7, 3608–3611.CrossRefPubMedADSGoogle Scholar
  73. [73]
    Palacios, J. J.; Fernández-Rossier, J.; Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 2008, 77, 195428.Google Scholar
  74. [74]
    Fernández-Rossier, J. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B 2008, 77, 075430.Google Scholar
  75. [75]
    Nemec, N.; Tománek, D.; Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys. Rev. Lett. 2006, 96, 076802.Google Scholar
  76. [76]
    Nemec, N.; Tománek, D.; Cuniberti, G. Modeling extended contacts for nanotube and graphene devices. Phys. Rev. B 2008, 77, 125420.Google Scholar
  77. [77]
    Tworzydło, J.; Trauzettel, B.; Titov, M.; Rycerz, A.; Beenakker, C. W. J. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 2006, 96, 246802.Google Scholar
  78. [78]
    Kastnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 2006, 51, 157–160.CrossRefADSGoogle Scholar
  79. [79]
    Cresti, A.; Grosso, G.; Pastori Parravicini, G. Numerical study of electronic transport in gated graphene ribbons. Phys. Rev. B 2007, 76, 205433.Google Scholar
  80. [80]
    Schomerus, H. Effective contact model for transport through weakly-doped graphene. Phys. Rev. B 2007, 76, 045433.Google Scholar
  81. [81]
    San-Jose, P.; Prada, E.; Golubev, D. S. Universal scaling of current fluctuations in disordered graphene. Phys. Rev. B 2007, 76, 195445.Google Scholar
  82. [82]
    Lewenkopf, C. H.; Mucciolo, E. R.; Castro Neto, A. H. Numerical studies of conductivity and Fano factor in disordered graphene. Phys. Rev. B 2008, 77, 081410.Google Scholar
  83. [83]
    Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U. C.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.CrossRefPubMedADSGoogle Scholar
  84. [84]
    DiCarlo, L.; Williams, J. R.; Zhang, Y.; McClure, D. T.; Marcus, C. M. Shot noise in graphene. Phys. Rev. Lett. 2008, 100, 156801.Google Scholar
  85. [85]
    Danneau, R.; Wu, F.; Craciun, M. F.; Russo, S.; Tomi, M. Y.; Salmilehto, J.; Morpurgo A. F.; Hakonen, P. J. Shot noise in ballistic graphene. Phys. Rev. Lett. 2008, 100, 196802.Google Scholar
  86. [86]
    Nemec, N; Cuniberti, G. Hofstadter butterflies of bilayer graphene. Phys. Rev. B 2007, 75, 201404.Google Scholar
  87. [87]
    Nemec, N; Cuniberti, G. Hofstadter butterflies of carbon nanotubes: Pseudofractality of the magnetoelectronic spectrum. Phys. Rev. B 2006, 74, 165411.Google Scholar
  88. [88]
    Brey, L.; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.Google Scholar
  89. [89]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefPubMedADSGoogle Scholar
  90. [90]
    Gusynin, V. P.; Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 146801.Google Scholar
  91. [91]
    Cresti, A. Proposal for a graphene-based current nanoswitch. Nanotechnology 2008, 19, 265401.Google Scholar
  92. [92]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. App. Phys. Lett. 2007, 91, 163513.Google Scholar
  93. [93]
    Ando, T.; Nakanishi, T.; Saito, R. Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 1998, 67, 2857–2862.CrossRefADSGoogle Scholar
  94. [94]
    White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240–242.CrossRefADSGoogle Scholar
  95. [95]
    McCann, E.; Kechedzhi, K.; Fal’ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.Google Scholar
  96. [96]
    Ostrovsky, P. M.; Gornyi, I. V.; Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 2006, 74, 235443.Google Scholar
  97. [97]
    Morpurgo A. F.; Guinea, F. Intervalley scattering, longrange disorder, and effective time-reversal symmetry breaking in graphene. Phys. Rev. Lett. 2006, 97, 196804.Google Scholar
  98. [98]
    Khveshchenko, D. V. Effects of long-range correlated disorder on Dirac fermions in graphene. Phys. Rev. B 2007, 75, 241406.Google Scholar
  99. [99]
    Suzuura, H.; Ando, T. Weak-localization in metallic carbon nanotubes. J. Phys. Soc. Jpn. 2006, 75, 024703.Google Scholar
  100. [100]
    Aleiner, I. L.; Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 2006, 97, 236801.Google Scholar
  101. [101]
    Nomura, K.; Koshino, M.; Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 2007, 99, 146806.Google Scholar
  102. [102]
    Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 1961, 124, 41–52.CrossRefMathSciNetADSGoogle Scholar
  103. [103]
    Abrahams, E.; Anderson, P. W.; Licciardello, D. C.; Ramakrishnan T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 1979, 42, 673–676CrossRefADSGoogle Scholar
  104. [104]
    Lee, P. A.; Fisher, D. S. Anderson localization in two dimensions. Phys. Rev. Lett. 1981, 47, 882–885.CrossRefMathSciNetADSGoogle Scholar
  105. [105]
    Lee, P. A.; Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337.CrossRefADSGoogle Scholar
  106. [106]
    Roche, S.; Saito, R. Magnetoresistance of carbon nanotubes: From molecular to mesoscopic fingerprints. Phys. Rev. Lett. 2001, 87, 246803.Google Scholar
  107. [107]
    Fedorov, G.; Lassagne, B.; Sagnes, M.; Raquet, B.; Broto, J.-M.; Triozon, F.; Roche, S.; Flahaut, E. Gate-dependent magnetoresistance phenomena in carbon nanotubes. Phys. Rev. Lett. 2005, 94, 066801.Google Scholar
  108. [108]
    Gomez-Navarro, C.; Pablo, P. J. De; Gómez-Herrero, J.; Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 2005, 4, 534–539.CrossRefPubMedADSGoogle Scholar
  109. [109]
    Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Anderson localization in carbon nanotubes: Defect density and temperature effects. Phys. Rev. Lett. 2005, 95, 266801.Google Scholar
  110. [110]
    Strunk, C.; Stojetz, B.; Roche, S. Quantum interference in multiwall carbon nanotubes. Semicond. Sci. Technol. 2006, 21, S38–S45.CrossRefADSGoogle Scholar
  111. [111]
    Fedorov, G.; Tselev, A.; Jimenez, D.; Latil, S.; Kalugin, N.; Barbara, P.; Roche, S. Magnetically induced field effect in carbon nanotube devices. Nano Lett. 2007, 7, 960–964.CrossRefPubMedADSGoogle Scholar
  112. [112]
    Lassagne, B.; Cleuziou, J.-P., Nanot, S.; Escofier, W.; Avriller, R.; Roche, S.; Forro, L.; Raquet, B.; Broto, J.-M. Aharonov-Bohm conductance modulation in ballistic carbon nanotubes. Phys. Rev. Lett. 2007, 98, 176802.Google Scholar
  113. [113]
    Stojetz, B.; Roche, S.; Miko, C.; Triozon, F.; Forro, L.; Strunk, C. Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes. New J. Phys. 2007, 9, 56.CrossRefADSGoogle Scholar
  114. [114]
    Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Ab initio study of transport properties in defected carbon nanotubes: An O(N) approach. J. Phys.: Condens. Matter 2008, 20, 294214.Google Scholar
  115. [115]
    Flores, F.; Biel, B.; Rubio, A.; Garcia-Vidal, F. J.; Gomez-Navarro, C.; de Pablo, P. J.; Gomez-Herrero, J. Anderson localization regime in carbon nanotubes: Size dependent properties. J. Phys.: Condens. Matter 2008, 20, 304211.Google Scholar
  116. [116]
    Hügle, S.; Egger, R. van Hove singularities in disordered multichannel quantum wires and nanotubes. Phys. Rev. B 2002, 66, 193311.Google Scholar
  117. [117]
    Nemec, N., Richter, K.; Cuniberti, G. Diffusion and localization in carbon nanotubes and graphene nanoribbons. New J. Phys. 2008, 10, 065014.Google Scholar
  118. [118]
    Abrikosov, A.; Gor’kov, L. P.; Dzyaloshiuskii, I. E. Quantum Field Theoretical Methods in Statistical Physics; Pergamon: Oxford, 1965.MATHGoogle Scholar
  119. [119]
    López Sancho, M. P.; López Sancho, J. M.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 1985, 15, 851–858.CrossRefADSGoogle Scholar
  120. [120]
    Nemec, N. Quantum transport in carbon-based nanostructures. PhD Thesis, Universität Regensburg, 2007.Google Scholar
  121. [121]
    Lherbier, A.; Persson, M.; Niquet, Y. M.; Triozon, F.; Roche, S. Quantum transport length scales in silicon-based semiconducting nanowires: Surface roughness effects. Phys. Rev. B. 2008, 77, 085301.Google Scholar
  122. [122]
    Triozon, F.; Roche, S.; Rubio, A.; Mayou, D. Electrical transport in carbon nanotubes: Role of disorder and helical symmetries. Phys. Rev. B 2004, 69, 121410.Google Scholar
  123. [123]
    Tikhonenko, F. V.; Horsell, D. W.; Gorbachev, R. V.; Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 2008, 100, 056802.Google Scholar
  124. [124]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.Google Scholar
  125. [125]
    Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: New York, NY, 1995.Google Scholar
  126. [126]
    Thouless, D. J. Maximum metallic resistance in thin wires. Phys. Rev. Lett. 1977, 39, 1167–1169.CrossRefADSGoogle Scholar
  127. [127]
    Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 1997, 69, 731–808.CrossRefADSGoogle Scholar
  128. [128]
    Avriller, R.; Latil, S.; Triozon, F.; Blase, X.; Roche, S. Chemical disorder strength in carbon nanotubes: xMagnetic tuning of quantum transport regimes. Phys. Rev. B 2006, 74, 121406.Google Scholar
  129. [129]
    Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 2006, 73, 085421.Google Scholar
  130. [130]
    Enoki, T.; Kobayashi, Y.; Katsuyama, C.; Osipov, V. Y.; Baidakova, M. V.; Takai, K.; Fukui, K.; Vul’, A. Y. Structures and electronic properties of surface/edges of nanodiamond and nanographite. Diamond Relat. Mater. 2007, 16, 2029–2034.CrossRefGoogle Scholar
  131. [131]
    Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 2006, 73, 125415.Google Scholar
  132. [132]
    Enoki, T.; Kobayashi, Y.; Fukui, K. I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609–645.CrossRefGoogle Scholar
  133. [133]
    Banerjee, S.; Sardar, M.; Gayathri, N.; Tyagi, A. K.; Raj, B. Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges. Phys. Rev. B 2005, 72, 075418.Google Scholar
  134. [134]
    Banerjee, S.; Sardar, M.; Gayathri, N.; Tyagi, A. K.; Raj, B. Enhanced conductivity in graphene layers and at their edges. Appl. Phys. Lett. 2006, 88, 602111.Google Scholar
  135. [135]
    Cançado, L. G.; Pimenta, M. A.; Neves, B. R.; Dantas, M. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.Google Scholar
  136. [136]
    de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.CrossRefADSGoogle Scholar
  137. [137]
    Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.Google Scholar
  138. [138]
    Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 2008, 3, 397–401.CrossRefGoogle Scholar
  139. [139]
    Querlioz, D.; Apertet, Y.; Valentin, A.; Huet, K.; Bournel, A.; Galdin-Retailleau, S.; Dollfus, P. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Appl. Phys. Lett. 2008, 92, 042108.Google Scholar
  140. [140]
    Evaldsson, M.; Zozoulenko, I. V.; Xu, H.; Heinzel, T. Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons. arXiv:0805.4326v1, 2008.Google Scholar
  141. [141]
    Mucciolo, E. R.; Castro Neto, A. H.; Lewenkopf, C. H. Conductance quantization and transport gap in disordered graphene nanoribbons. arXiv:0806.3777, 2008.Google Scholar
  142. [142]
    Martin, I.; Blanter, Y. M. Transport in disordered graphene nanoribbons. arXiv:0705.0532v2, 2008.Google Scholar
  143. [143]
    Li, T. C.; Lu, S.-P. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B. 2008, 77, 085408.Google Scholar
  144. [144]
    Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.Google Scholar
  145. [145]
    Fiori, G.; Yoon, Y.; Hong, S.; Iannaccone, G.; Guo, J. Performance comparison of graphene nanoribbon Schottky barrier and MOS FETs. In Int. Electron Device Meeting (IEDM) Tech. Dig. 2007, pp. 757–760.Google Scholar
  146. [146]
    Basu, D.; Gilbert, M. J.; Register, L. F.; Banerjee, S. K.; MacDonald, A. H. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 2008, 92, 042114.Google Scholar
  147. [147]
    Wimmer, M.; Adagideli, I.; Berber, S.; Tománek, D; Richter, K. Spin transport in rough graphene nanoribbons. Phys. Rev. Lett. 2008, 100, 177207.Google Scholar
  148. [148]
    Yoon, Y.; Fiori, G.; Hong, S.; Iannaccone, G.; Guo, J. Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Transactions on Electron Devices 2008, 55, 2314–2323.CrossRefADSGoogle Scholar
  149. [149]
    Ouyang, Y.; Wang, X.; Dai, H.; Guo, J. Carrier scattering in graphene nanoribbon transistors. Appl. Phys. Lett. 2008, 92, 243124.Google Scholar
  150. [150]
    Shon N. H.; Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 1998, 67, 2421–2429.CrossRefADSGoogle Scholar
  151. [151]
    Nomura K.; MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 2006, 96, 256602.Google Scholar
  152. [152]
    Lherbier, A.; Biel, B.; Niquet, Y. M.; Roche, S. Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects. Phys. Rev. Lett. 2008, 100, 036803.Google Scholar
  153. [153]
    Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 2008, 73, 125411.Google Scholar
  154. [154]
    Hwang, E. H.; Adam, S.; Das Sarma, S. Carrier transport in two-dimensional graphene layers Phys. Rev. Lett. 2007, 98, 186806.Google Scholar
  155. [155]
    Dong, H. M.; Xu, W.; Zeng, Z.; Peeters, F. M. Quantum and transport conductivities in monolayer graphene. Phys. Rev. B 2008, 77, 235402.Google Scholar
  156. [156]
    Nomura, K.; Ryu S.; Koshino, M.; Mudry, C.; Furusaki A. Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field. Phys. Rev. Lett. 2008, 100, 246806.Google Scholar
  157. [157]
    Kim, E.-A.; Castro Neto, A. H. Graphene as an electronic membrane. arXiv:cond-mat/0702562v2, 2008.Google Scholar
  158. [158]
    Suzuura, H.; Ando, T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Phys. Rev. Lett. 2002, 89, 266603.Google Scholar
  159. [159]
    Ostrovsky, P. M.; Gornyi, I. V.; Mirlin, A. D. Quantum criticality and minimal conductivity in graphene with long-range disorder. Phys. Rev. Lett. 2007, 98, 256801.Google Scholar
  160. [160]
    Bardarson, J. H.; Tworzydło, J.; Brouwer, P. W.; Beenakker, C. W. J. One-parameter scaling at the Dirac point in graphene. Phys. Rev. Lett. 2007, 99, 106801.Google Scholar
  161. [161]
    Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 2008, 77, 075422.Google Scholar
  162. [162]
    Novikov, D. S. Numbers of donors and acceptors from transport measurements in graphene. Appl. Phys. Lett. 2007, 91, 102102.Google Scholar
  163. [163]
    Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. PNAS. 2007, 104, 18392.Google Scholar
  164. [164]
    Lherbier, A.; Blase X., M.; Niquet, Y. M.; Triozon, F.; Roche S. Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 2008, 101, 036808.Google Scholar
  165. [165]
    Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.Google Scholar
  166. [166]
    Koshino, M.; Ando, T. Hall plateau diagram for the Hofstadter butterfly energy spectrum. Phys. Rev. B 2006, 73, 155304.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  • Alessandro Cresti
    • 1
    • 2
  • Norbert Nemec
    • 3
  • Blanca Biel
    • 1
    • 2
  • Gabriel Niebler
    • 4
    • 5
  • François Triozon
    • 1
  • Gianaurelio Cuniberti
    • 4
  • Stephan Roche
    • 2
  1. 1.CEA, LETI, MINATECGrenobleFrance
  2. 2.CEAInstitute for Nanoscience and Cryogenics, INAC/SPSMS/GTGrenoble Cedex 9France
  3. 3.Theory of Condensed Matter Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  4. 4.Institute for Materials ScienceTU DresdenDresdenGermany
  5. 5.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic

Personalised recommendations