Nano Research

, Volume 1, Issue 5, pp 403–411 | Cite as

Preparation of monodisperse Se colloid spheres and Se nanowires using Na2SeSO3 as precursor

Open Access
Research Article


Nearly monodisperse spherical amorphous Se colloids are prepared by the dismutation of Na2SeSO3 solution at room temperature; by altering the pH of the solution, amorphous Se colloid spheres with sizes of about 120 nm, 200 nm, 300 nm, and 1 µm can be obtained. Se@Ag2Se core/shell spheres are successfully synthesized by using the obtained amorphous Se (a-Se) spheres as templates, indicating the potential applications of these Se nanomaterials in serving as soft templates for other selenides. Meanwhile, selenium nanowires are obtained through a “solid-solution-solid” growth process by dispersing the prepared Se spheres in ethanol. This simple and environmentally benign approach may offer more opportunities in the synthesis and applications of nanocrystal materials.


Na2SeSO3 dismutation amorphous Se (a-Se) spheres trigonal Se (t-Se) nanowires 


  1. [1]
    Zingaro, R. A.; Cooper W. C. Selenium. Van Nostrand-Reinhold: New York, 1974.Google Scholar
  2. [2]
    Lide, D. V. Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Cleveland, 2002.Google Scholar
  3. [3]
    Berger, L. I. Semiconductor Materials; CRC Press: Boca Raton, FL, 1997, p. 86.Google Scholar
  4. [4]
    Nagels, P.; Sleeckx, E.; Callaerts, R.; Marquez, E.; Gonzalez, J. M.; Bernal-Oliva, A. M. Optical properties of amorphous Se films prepared by PECVD. Solid State Commun. 1997, 102, 539–541.CrossRefADSGoogle Scholar
  5. [5]
    Innami, T.; Miyazaki, T.; Adachi, A. Optical constants of amorphous Se. J. Appl. Phys. 1999, 86, 1382–1387.CrossRefADSGoogle Scholar
  6. [6]
    Gates, B.; Wu, Y. Y.; Yin, Y. D.; Yang, P. D.; Xia, Y. N. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J. Am. Chem. Soc. 2001, 123, 11500–11501.CrossRefPubMedGoogle Scholar
  7. [7]
    Jiang, X. C.; Mayers, B.; Herricks, T.; Xia, Y. N. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Adv. Mater. 2003, 15, 1740 1743.Google Scholar
  8. [8]
    Gates, B.; Mayers, B.; Cattle, B.; Xia, Y. N. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 2002, 12, 219–227.CrossRefGoogle Scholar
  9. [9]
    Mayers, B. T.; Liu, K.; Sunderland, D.; Xia, Y. N. Sonochemical synthesis of trigonal selenium nanowires. Chem. Mater. 2003, 15, 3852–3858.CrossRefGoogle Scholar
  10. [10]
    Guatam, U. K.; Nath, M.; Rao, C. N. R. New strategies for the synthesis of t-selenium nanorods and nanowires. J. Mater. Chem. 2003, 13, 2845–2847.CrossRefGoogle Scholar
  11. [11]
    Guatam, U. K.; Gundiah, G.; Kulkarni, G. U. Scanning tunneling microscopy and spectroscopy of Se and Te nanorods. Solid State Commun. 2005, 136, 169–172.CrossRefADSGoogle Scholar
  12. [12]
    Zhang, J.; Zhang, S. Y.; Chen, H. Y. CTAB-controlled synthesis of one-dimensional selenium nanostructures. Chem. Lett. 2004, 33, 1054–1055.CrossRefGoogle Scholar
  13. [13]
    Liu, X. Y.; Mo, M. S.; Zeng, J. H.; Qian, Y. T. Large-scale synthesis of ultra-long wire-like single-crystal selenium arrays. J. Cryst. Growth 2003, 259, 144–148.CrossRefADSGoogle Scholar
  14. [14]
    Smith, T. W.; Cheatham, R. A. Functional polymers in the generation of colloidal dispersions of amorphous selenium. Macromolecules 1980, 13, 1203–1207.CrossRefADSGoogle Scholar
  15. [15]
    Zhang, J. S.; Gao, X. V.; Zhang, L. D.; Bao, Y. P. Biological effects of a nano red elemental selenium. Biofactors 2001, 15, 27–38.CrossRefPubMedGoogle Scholar
  16. [16]
    Gao, X. Y.; Gao, T.; Zhang, L. D. Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J. Mater. Chem. 2003, 13, 6–8.CrossRefGoogle Scholar
  17. [17]
    Mees, D. R.; Pysto, W.; Tarcha, P. J. J. Formation of selenium colloids using ascorbate as the reducing agent. Colloid Interface Sci. 1995, 170, 254–260.CrossRefGoogle Scholar
  18. [18]
    Lin, Z. H.; Wang, C. R. C. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys. 2005, 92, 591–594.CrossRefGoogle Scholar
  19. [19]
    Zhu, Y. J.; Qian, Y. T.; Huang, H.; Zhang, M. W. Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation. Mater. Lett. 1996, 28, 119–122.CrossRefGoogle Scholar
  20. [20]
    Jeong, U.; Xia, Y. N. Synthesis and crystallization of monodisperse spherical colloids of amorphous selenium. Adv. Mater. 2005, 17, 102–106.CrossRefGoogle Scholar
  21. [21]
    Song, J. M.; Zhu, J. H.; Yu, S. H. Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface: From monodisperse amorphous Se nanospheres toward Se nanorods. J. Phys. Chem. B 2006, 110, 23790–23795.CrossRefPubMedGoogle Scholar
  22. [22]
    Lucovsky, G.; Mooradian, A.; Taylor, W.; Wright, G. B.; Keezer, R. C. Identification of fundamental vibrational modes of trigonal α-monoclinic and amorphous selenium. Solid State Commun. 1967, 5, 113–117.CrossRefADSGoogle Scholar
  23. [23]
    Jeong, U.; Xia, Y. N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew. Chem. Int. Ed. 2005, 44, 3099–3103.CrossRefGoogle Scholar
  24. [24]
    Camargo, P. H. C.; Lee, Y. H.; Jeong, U.; Zou, Z. Q.; Xia, Y. N. Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 2007, 23, 2985–2992.CrossRefPubMedGoogle Scholar
  25. [25]
    Peng, Q.; Xu, S.; Zhuang, Z. B.; Wang, X.; Li, Y. D. A general chemical conversion method to various semiconductor hollow structures. Small 2005, 1, 216–221.CrossRefPubMedGoogle Scholar
  26. [26]
    Gates, B.; Yin, Y. D.; Xia, Y. N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J. Am. Chem. Soc. 2000, 122, 12582–12583.CrossRefGoogle Scholar
  27. [27]
    Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. N. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 2002, 14, 1749–1752.CrossRefGoogle Scholar
  28. [28]
    Li, Q.; Yam, V. W. W. High-yield synthesis of selenium nanowires in water at room temperature. Chem. Commun. 2006, 9, 1006–1008.CrossRefGoogle Scholar
  29. [29]
    Xie, Q.; Dai, Z.; Huang, W. W.; Zhang, W.; Ma, D. K.; Hu, X. K.; Qian, Y. T. Large-scale synthesis and growth mechanism of single-crystal Se nanobelts. Cryst. Growth Des. 2006, 6, 1514–1517.CrossRefGoogle Scholar
  30. [30]
    Li, X. M.; Li, Y.; Li, S. Q.; Zhou, W. W.; Chu, H. B.; Chen, W.; Li, I. L.; Tang, Z. K. Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process. Cryst. Growth Des. 2005, 5, 911–916.CrossRefGoogle Scholar
  31. [31]
    Abdelouas, A.; Gong, W. L.; Lutze, W.; Shelnutt, J. A.; Franco R.; Moura, I. Using cytochrome c 3 to make selenium nanowires. Chem. Mater. 2000, 12, 1510–1512.CrossRefGoogle Scholar
  32. [32]
    Cheng, B.; Samulski, E. T. Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires. Chem. Commun. 2003, 16, 2024–2025.CrossRefGoogle Scholar
  33. [33]
    Lu, J.; Xie, Y.; Xu, F.; Zhu, L. Y. Study of the dissolution behavior of selenium and tellurium in different solvents—A novel route to Se, Te tubular bulk single crystals. J. Mater. Chem. 2002, 12, 2755–2761.CrossRefGoogle Scholar
  34. [34]
    Lee. E. P.; Xia. Y. Growth and patterning of Pt nanowires on silicon substrates. Nano Res. 2008, 1, 129–137.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations