Nano Research

, Volume 1, Issue 4, pp 273–291 | Cite as

Raman spectroscopy and imaging of graphene

Open Access
Review Article


Graphene has many unique properties that make it an ideal material for fundamental studies as well as for potential applications. Here we review recent results on the Raman spectroscopy and imaging of graphene. We show that Raman spectroscopy and imaging can be used as a quick and unambiguous method to determine the number of graphene layers. The strong Raman signal of single layer graphene compared to graphite is explained by an interference enhancement model. We have also studied the effect of substrates, the top layer deposition, the annealing process, as well as folding (stacking order) on the physical and electronic properties of graphene. Finally, Raman spectroscopy of epitaxial graphene grown on a SiC substrate is presented and strong compressive strain on epitaxial graphene is observed. The results presented here are highly relevant to the application of graphene in nano-electronic devices and help in developing a better understanding of the physical and electronic properties of graphene.


Graphene Raman spectroscopy and imaging substrate effect device application 


  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379–1379.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 2007, 446, 56–59.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature dependent transport in suspended graphene. Phy. Rev. Lett. 2008, 101, 096802.CrossRefADSGoogle Scholar
  10. [10]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Fundenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.CrossRefADSGoogle Scholar
  11. [11]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2007, 446, 342–342.CrossRefADSGoogle Scholar
  12. [12]
    Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 2007, 3, 192–196.CrossRefGoogle Scholar
  13. [13]
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. T. R. Soc. A 2004, 362, 2271–2288.CrossRefADSGoogle Scholar
  17. [17]
    Dresselhaus, M. S.; Eklund, P. C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705–814.CrossRefADSGoogle Scholar
  18. [18]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefADSGoogle Scholar
  19. [19]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Cancado, L. G.; Reina, A.; Kong, J.; Dresselhaus, M. S. Geometrical approach for the study of G’ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev. B 2008, 77, 245408.CrossRefADSGoogle Scholar
  21. [21]
    Malard, L. M.; Nilsson, J.; Elias, D. C.; Brant, J. C.; Plentz, F.; Alves, E. S.; Castro, A. H.; Pimenta, M. A. Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 2007, 76, 201401.CrossRefADSGoogle Scholar
  22. [22]
    Yan, J.; Zhang, Y. B.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefADSGoogle Scholar
  25. [25]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefPubMedGoogle Scholar
  26. [26]
    Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.CrossRefADSGoogle Scholar
  27. [27]
    Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P.N.; de Heer, W. A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar
  31. [31]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayo, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Dedkov, Y. S.; Fonin, M.; Rudiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurti, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High yield production of graphene by liquid phase exfoliation of graphite Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  35. [35]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefPubMedADSGoogle Scholar
  36. [36]
    Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Novoselov, K. S.; McCann, E.; Morozov, S. V.; Fal’ko, V. I.; Katsnelson, M. I.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. K. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2006, 2, 177–180.CrossRefGoogle Scholar
  39. [39]
    Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Wang, Y. Y.; Ni, Z. H.; Shen, Z. X.; Wang, H. M.; Wu, Y. H. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 2008, 92, 043121.CrossRefADSGoogle Scholar
  41. [41]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.CrossRefPubMedGoogle Scholar
  42. [42]
    Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214–5217.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Wang, Y. Y.; Ni, Z. H.; Yu, T.; Wang, H. M.; Wu, Y. H.; Chen, W.; Wee, A. T. S.; Shen, Z. X. Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640.CrossRefGoogle Scholar
  44. [44]
    Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using refl ection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.CrossRefADSGoogle Scholar
  46. [46]
    Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717.CrossRefPubMedADSGoogle Scholar
  48. [48]
    Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: New York, 1991.Google Scholar
  49. [49]
    Calizo, I.; Bao, W. Z.; Miao, F.; Lau, C. N.; Balandin, A. A. The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass. Appl. Phys. Lett. 2007, 91, 201904.CrossRefADSGoogle Scholar
  50. [50]
    Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.CrossRefADSGoogle Scholar
  51. [51]
    Calizo, I.; Teweldebrhan, D.; Bao, W.; Miao, F.; Lau, C. N.; Balandin, A. A. Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates. J. Phys.: Conf. Ser. 2008, 109, 012008.CrossRefADSGoogle Scholar
  52. [52]
    Falkovsky, L. A. Phonon dispersion in graphene. J. Exp. Theor. Phys. 2007, 105, 397–403.CrossRefADSGoogle Scholar
  53. [53]
    Kim, S.; Ihm, J.; Choi, H. J.; Son, Y. W. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 2008, 100, 176802.CrossRefPubMedADSGoogle Scholar
  54. [54]
    Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H.; Magaud, L. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.CrossRefPubMedADSGoogle Scholar
  55. [55]
    Ni, Z. H.; Chen, W.; Fan, X. F.; Kuo, J. L.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 2008, 77, 115416.CrossRefADSGoogle Scholar
  56. [56]
    Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov, L. S.; Kim, P. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 2007, 99, 166804.CrossRefPubMedADSGoogle Scholar
  57. [57]
    Cheianov, V. V.; Fal’ko, V.; Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 2007, 315, 1252–1255.CrossRefPubMedADSGoogle Scholar
  58. [58]
    Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.CrossRefGoogle Scholar
  59. [59]
    Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X. Tunable stress and controlled thickness modifi cation in graphene by annealing. ACS Nano 2008, 2, 1033–1039.CrossRefPubMedGoogle Scholar
  60. [60]
    Barros, E. B.; Demir, N. S.; Filho, A. G. S.; Filho, J. M.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy of graphitic foams. Phys. Rev. B 2005, 71, 165422.CrossRefADSGoogle Scholar
  61. [61]
    Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, CA., 1996, p. 965.Google Scholar
  62. [62]
    Maiti, A.; Svizhenko, A.; Anantram, M. P. Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality. Phys. Rev. Lett. 2002, 88, 126805.CrossRefPubMedADSGoogle Scholar
  63. [63]
    Minot, E. D.; Yaish, Y.; Sazonova, V.; Park, J. Y.; Brink, M.; McEuen, P. L. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 2003, 90, 156401.CrossRefPubMedADSGoogle Scholar
  64. [64]
    Heyd, R.; Charlier, A.; McRae, E. Uniaxial-stress effects on the electronic properties of carbon nanotubes. Phys. Rev. B 1997, 55, 6820–6824.CrossRefADSGoogle Scholar
  65. [65]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefPubMedADSGoogle Scholar
  66. [66]
    Sadowski, M. L.; Martinez, G.; Potemski, M.; Berger, C.; de Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 2006, 97, 266405.CrossRefPubMedADSGoogle Scholar
  67. [67]
    Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W. A.; First, P. N.; Conrad, E. H.; Jeffrey, C. A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106.CrossRefADSGoogle Scholar
  68. [68]
    Hass, J.; Varchon, F.; Millan-Otoya, J. E.; Sprinkle, M.; Sharma, N.; De Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.CrossRefPubMedADSGoogle Scholar
  69. [69]
    Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.CrossRefPubMedADSGoogle Scholar
  70. [70]
    Ni, Z. H.; Wang, Y. Y.; Yu, T.; You, Y. M.; Shen, Z. X. Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 2008, 77, 235403.CrossRefADSGoogle Scholar
  71. [71]
    Faugeras, C.; Nerriere, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer, W. A. Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 2008, 92, 011914.CrossRefADSGoogle Scholar
  72. [72]
    Plochocka, P.; Faugeras, C.; Orlita, M.; Sadowski, M. L.; Martinez, G.; Potemski, M.; Goerbig, M. O.; Fuchs, J. N.; Berger, C.; de Heer, W. A. High-energy limit of massless Dirac Fermions in multilayer graphene using magneto-optical transmission spectroscopy. Phys. Rev. Lett. 2008, 100, 087401.CrossRefPubMedADSGoogle Scholar
  73. [73]
    Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.CrossRefPubMedADSGoogle Scholar
  74. [74]
    Mattausch, A.; Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 2007, 99, 076802.CrossRefPubMedADSGoogle Scholar
  75. [75]
    Hass, J.; Feng, R.; Millan-Otoya, J. E.; Li, X.; Sprinkle, M.; First, P. N.; de Heer, W. A.; Conrad, E. H.; Berger, C. Structural properties of the multilayer graphene/4H-SiC(0001) system as determined by surface X-ray diffraction. Phys. Rev. B 2007, 75, 214109.CrossRefADSGoogle Scholar
  76. [76]
    Chen, W.; Xu, H.; Liu, L.; Gao, X. Y.; Qi, D. C.; Peng, G. W.; Tan, S. C.; Feng, Y. P.; Loh, K. P.; Wee, A. T. S. Atomic structure of the 6H-SiC(0001) nanomesh. Surf. Sci. 2005, 596, 176–186.ADSGoogle Scholar
  77. [77]
    Mallet, P.; Varchon, F.; Naud, C.; Magaud, L.; Berger, C.; Veuillen, J. Y. Electron states of mono-and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B 2007, 76, 041403.CrossRefADSGoogle Scholar
  78. [78]
    Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 2007, 129, 10418–10422.CrossRefPubMedGoogle Scholar
  79. [79]
    Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.CrossRefADSGoogle Scholar
  80. [80]
    Burton, J. C.; Sun, L.; Long, F. H.; Feng, Z. C.; Ferguson, I. T. First-and second-order Raman scattering from semiinsulating 4H-SiC. Phys. Rev. B 1999, 59, 7282–7284.CrossRefADSGoogle Scholar
  81. [81]
    Kunert, H. W.; Maurice, T.; Barnas, J.; Malherbe, J.; Brink, D. J.; Prinsloo, L. Raman and photoluminescence spectroscopy from n-and p-type 6H-SIC alpha-particle irradiated. Vacuum 2005, 78, 503–508.CrossRefGoogle Scholar
  82. [82]
    Ramsdell, L. S. The crystal structure of α-SiC, type 4. Am. Mineral. 1944, 29, 431–442.Google Scholar
  83. [83]
    Lukesh, J. S.; Pauling, L. The problem of the graphite structure. Am. Mineral. 1950, 35, 125.Google Scholar
  84. [84]
    Rohrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zhenhua Ni
    • 1
  • Yingying Wang
    • 1
  • Ting Yu
    • 1
  • Zexiang Shen
    • 1
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations