Nano Research

, Volume 1, Issue 4, pp 333–340 | Cite as

Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching

  • Madathumpady Abubaker Habeeb Muhammed
  • Subramani Ramesh
  • Sudarson Sekhar Sinha
  • Samir Kumar Pal
  • Thalappil Pradeep
Open Access
Research Article

Abstract

Two fluorescent quantum clusters of gold, namely Au25 and Au8, have been synthesized from mercaptosuccinic acid-protected gold nanoparticles of 4–5 nm core diameter by etching with excess glutathione. While etching at pH ∼3 yielded Au25, that at pH 7–8 yielded Au8. This is the first report of the synthesis of two quantum clusters starting from a single precursor. This simple method makes it possible to synthesize well-defined clusters in gram quantities. Since these clusters are highly fluorescent and are highly biocompatible due to their low metallic content, they can be used for diagnostic applications.

Keywords

Gold cluster glutathione pH ligand etching fluorescence 

Supplementary material

12274_2008_8035_MOESM1_ESM.pdf (661 kb)
Supplementary material, approximately 664 KB.

References

  1. [1]
    Balamurugan, B.; Maruyama, T. Evidence of an enhanced interband absorption in Au nanoparticles: Size-dependent electronic structure and optical properties. Appl. Phys. Lett. 2005, 87, 143105.CrossRefADSGoogle Scholar
  2. [2]
    Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, in press, [DOI: 10.1021/ar7002804].Google Scholar
  3. [3]
    Guo, R.; Song, Y.; Wang, G.; Murray, R. W. Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J. Am. Chem. Soc. 2005, 127, 2752–2757.CrossRefPubMedGoogle Scholar
  4. [4]
    Duan, C.; Cui, H.; Zhang, Z.; Liu, B.; Guo, J.; Wang, W. Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J. Phys. Chem. C 2007, 111, 4561–4566.CrossRefGoogle Scholar
  5. [5]
    Ramakrishna, G.; Ghosh, H. N. Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols. Langmuir 2003, 19, 3006–3012.CrossRefGoogle Scholar
  6. [6]
    Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780–7781.CrossRefPubMedGoogle Scholar
  8. [8]
    Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Duan, H.; Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J Am. Chem. Soc. 2007, 129, 2412–2413.CrossRefPubMedGoogle Scholar
  10. [10]
    Woehrle, G. H.; Hutchison, J. E. Thiol-functionalized undecagold clusters by ligand exchange: Synthesis, mechanism, and properties. Inorg. Chem. 2005, 44, 6149–6158.CrossRefPubMedGoogle Scholar
  11. [11]
    Bertino, M. F.; Sun, Z.-M.; Zhang, R.; Wang, L.-S. Facile syntheses of monodisperse ultrasmall Au clusters. J. Phys. Chem. B 2006, 110, 21416–21418.CrossRefPubMedGoogle Scholar
  12. [12]
    Nunokawa, K.; Onaka, S.; Ito, M.; Horibe, M.; Yonezawa, T.; Nishihara, H.; Ozeki, T.; Chiba, H.; Watase, S.; Nakamoto, M. Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles. J. Organomet. Chem. 2006, 691, 638–642.CrossRefGoogle Scholar
  13. [13]
    Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 2006, 110, 11611–11614.CrossRefPubMedGoogle Scholar
  14. [14]
    Woehrle, G. H.; Warner, M. G.; Hutchison, J. E. Ligand exchange reactions yield subnanometer, thiol-stabilized gold particles with defined optical transitions. J. Phys. Chem. B 2002, 106, 9979–9981.CrossRefGoogle Scholar
  15. [15]
    Menard, L. D.; Gao, S.-P.; Xu, H.; Twesten, R. D.; Harper, A. S.; Song, Y.; Wang, G.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I. et al. Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: Quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J. Phys. Chem. B 2006, 110, 12874–12883.CrossRefPubMedGoogle Scholar
  16. [16]
    Abad, J. M.; Sendroiu, I. E.; Gass, M.; Bleloch, A.; Mills, A. J.; Schiffrin D. J. Synthesis of ω-hydroxy hexathiolate-protected subnanometric gold clusters. J. Am. Chem. Soc. 2007, 129, 12932–12933.CrossRefPubMedGoogle Scholar
  17. [17]
    Menard, L. D.; Xu, H.; Gao, S. P.; Twesten, R. D.; Harper, A. S.; Song, Y.; Wang, G.; Douglas, A. D.; Yang, J. C.; Frenkel, A. I.; et al. Metal core bonding motifs of monodisperse icosahedral Au13 and larger Au monolayer-protected clusters as revealed by X-ray absorption spectroscopy and transmission electron microscopy. J. Phys. Chem. B 2006, 110, 14564–14573.CrossRefPubMedGoogle Scholar
  18. [18]
    Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold: Glutathione cluster compound. J. Phys. Chem. B 1998, 102, 10643–10646.CrossRefGoogle Scholar
  19. [19]
    Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.CrossRefPubMedGoogle Scholar
  20. [20]
    Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc. 2005, 127, 13464–13465.CrossRefPubMedGoogle Scholar
  21. [21]
    Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda T. Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 2007, 3, 835–839.CrossRefPubMedGoogle Scholar
  22. [22]
    Habeeb Muhammed, M. A.; Pradeep, T. Reactivity of Au25 clusters with Au3+. Chem. Phys. Lett. 2007, 449, 186–190.CrossRefADSGoogle Scholar
  23. [23]
    Shibu, E. S.; Habeeb Muhammed, M. A.; Tsukuda, T.; Pradeep, T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J. Phys. Chem C 2008, 112, 12168–12176.CrossRefGoogle Scholar
  24. [24]
    Habeeb Muhammed, M. A.; Shaw, A. K.; Pal, S. K.; Pradeep T. Quantum clusters of gold exhibiting FRET. J. Phys. Chem C, 2008, 112, 14324–14330.CrossRefGoogle Scholar
  25. [25]
    Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.CrossRefPubMedGoogle Scholar
  26. [26]
    Lee, T.-H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res. 2005, 38, 534–541.CrossRefPubMedGoogle Scholar
  27. [27]
    Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.CrossRefPubMedGoogle Scholar
  28. [28]
    Huang, T.; Murray, R. W. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 2001, 105, 12498–12502.CrossRefGoogle Scholar
  29. [29]
    Brinas, R. P.; Hu, M.; Qian, L.; Lymar, E. S.; Hainfeld, J. F. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 2008, 130, 975–982.CrossRefPubMedGoogle Scholar
  30. [30]
    Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T. Fluorescent gold nanoparticle superlattices. Adv. Mater. 2008, in press, [DOI: 10.1002/adma.200800632].Google Scholar
  31. [31]
    Chen, S.; Kimura, K. Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 1999, 15, 1075–1082.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Madathumpady Abubaker Habeeb Muhammed
    • 1
  • Subramani Ramesh
    • 1
  • Sudarson Sekhar Sinha
    • 2
  • Samir Kumar Pal
    • 2
  • Thalappil Pradeep
    • 1
  1. 1.DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of Technology MadrasChennaiIndia
  2. 2.Unit for Nanoscience and Technology, Department of Chemical, Biological and Macromolecular SciencesSatyendra Nath Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations