Skip to main content
Log in

In vivo imaging for neurovascular disease research

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Connections between various cell types in the brain enable cognitive function. The neurovascular unit is a structure composed of different cell types that regulate neurovascular coupling, blood–brain barrier permeability, and other interactions with peripheral systems. The relationship among the components of the neurovascular unit is complex and difficult to study without the use of in vivo neurovascular disease imaging. In this review, we introduce principles and examples of various in vivo optical imaging techniques including laser Doppler flowmetry, laser speckle contrast imaging, intrinsic optical signal imaging, optical coherence tomography, and two-photon microscopy. Furthermore, we introduce recent advances of in vivo imaging and future directions for promoting neurovascular disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonniere L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–1731

    Article  CAS  PubMed  Google Scholar 

  • Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913

    Article  CAS  PubMed  Google Scholar 

  • Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions. Annu Rev Neurosci 38:25–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Ayata C, Dunn AK, Gursoy OY, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755

    Article  PubMed  Google Scholar 

  • Badhwar A, Lerch JP, Hamel E, Sled JG (2013) Impaired structural correlates of memory in Alzheimer’s disease mice. Neuroimage Clin 3:290–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC, Ziv Y, Attardo A, Recht L, Schnitzer MJ (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak K, Manjunatha M, Dutta PK (2012) Review of laser speckle-based analysis in medical imaging. Med Biol Eng Comput 50:547–558

    Article  PubMed  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth MJ (2007) Adaptive optics in microscopy. Philos Trans A Math Phys Eng Sci 365:2829–2843

    Article  PubMed  Google Scholar 

  • Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, Joutel A, Nedergaard M, Smith KJ, Zlokovic BV, Wardlaw JM (2018) Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc Res 114:1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Fordsmann JC, Jensen SH, Gesslein B, Lonstrup M, Hald BO, Zambach SA, Brodin B, Lauritzen MJ (2018) Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl Acad Sci USA 115:E5796–E5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE (2011) Amyloid Beta induces oxidative stress-mediated blood–brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 15:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Luo Q, Zeng S, Chen S, Cen J, Gong H (2003) Modified laser speckle imaging method with improved spatial resolution. J Biomed Opt 8:559–564

    Article  PubMed  Google Scholar 

  • Cui M, Zhou Y, Wei B, Zhu XH, Zhu W, Sanders MA, Ugurbil K, Chen W (2017) A proof-of-concept study for developing integrated two-photon microscopic and magnetic resonance imaging modality at ultrahigh field of 164 tesla. Sci Rep 7:2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J (2017) A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci 20:1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng F, Ding C, Martin JC, Scarborough NM, Song Z, Eakins GS, Simpson GJ (2018) Video-rate hyperspectral two-photon fluorescence microscopy for in vivo imaging. SPIE BiOS 10505:9

    Google Scholar 

  • Devor A, Hillman EM, Tian P, Waeber C, Teng IC, Ruvinskaya L, Shalinsky MH, Zhu H, Haslinger RH, Narayanan SN, Ulbert I, Dunn AK, Lo EH, Rosen BR, Dale AM, Kleinfeld D, Boas DA (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28:14347–14357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S (2013) In vivo astrocytic Ca(2+) signaling in health and brain disorders. Future Neurol 8:529–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596

    Article  CAS  PubMed  Google Scholar 

  • Dorand RD, Barkauskas DS, Evans TA, Petrosiute A, Huang AY (2014) Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital 3:e29728

    Article  PubMed  PubMed Central  Google Scholar 

  • Draijer M, Hondebrink E, van Leeuwen T, Steenbergen W (2009) Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 24:639–651

    Article  PubMed  Google Scholar 

  • Drew PJ, Blinder P, Cauwenberghs G, Shih AY, Kleinfeld D (2010) Rapid determination of particle velocity from space-time images using the Radon transform. J Comput Neurosci 29:5–11

    Article  PubMed  Google Scholar 

  • Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA, Dale AM, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30

    Article  CAS  PubMed  Google Scholar 

  • Erdener SE, Tang J, Sajjadi A, Kilic K, Kura S, Schaffer CB, Boas DA (2017) Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X17743877

    Article  PubMed  PubMed Central  Google Scholar 

  • Essex TJ, Byrne PO (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13:189–194

    Article  CAS  PubMed  Google Scholar 

  • Freygang WH Jr, Sokoloff L (1958) Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas. Adv Biol Med Phys 6:263–279

    Article  CAS  PubMed  Google Scholar 

  • Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, Schafer DP, Andermann ML (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9:2515–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci USA 88:11559–11563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagag AM, Gao SS, Jia Y, Huang D (2017) Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol 7:115–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillman EM (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob AD, Ramsaran AI, Mocle AJ, Tran LM, Yan C, Frankland PW, Josselyn SA (2018) A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Curr Protoc Neurosci 84:e51

    Article  PubMed  Google Scholar 

  • Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14:374–380

    Article  CAS  PubMed  Google Scholar 

  • Ji N, Freeman J, Smith SL (2016) Technologies for imaging neural activity in large volumes. Nat Neurosci 19:1154–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA 112:E2395–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmi SM, Richards LM, Schrandt CJ, Davis MA, Dunn AK (2015) Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 35:1076–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly P, Hudry E, Hou SS, Bacskai BJ (2018) In vivo two photon imaging of astrocytic structure and function in Alzheimer’s disease. Front Aging Neurosci 10:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Kety SS (1950) Circulation and metabolism of the human brain in health and disease. Am J Med 8:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kherlopian AR, Song T, Duan Q, Neimark MA, Po MJ, Gohagan JK, Laine AF (2008) A review of imaging techniques for systems biology. BMC Syst Biol 2:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jeong Y (2013) Augmentation of sensory-evoked hemodynamic response in an early Alzheimer’s disease mouse model. J Alzheimers Dis 37:857–868

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Zhang Y, Lecoq J, Jung JC, Li J, Zeng H, Niell CM, Schnitzer MJ (2016) Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep 17:3385–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadzic S, Zlokovic BV (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisler K, Lazic D, Sweeney MD, Plunkett S, El Khatib M, Vinogradov SA, Boas DA, Sakadzi S, Zlokovic BV (2018) In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 13:1377–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs R, Heinemann U, Steinhauser C (2012) Mechanisms underlying blood–brain barrier dysfunction in brain pathology and epileptogenesis: role of astroglia. Epilepsia 53(Suppl 6):53–59

    Article  CAS  PubMed  Google Scholar 

  • Lassen NA, Ingvar DH, Skinhoj E (1978) Brain function and blood flow. Sci Am 239:62–71

    Article  CAS  PubMed  Google Scholar 

  • Le Thinh M, Paul JS, Al-Nashash H, Tan A, Luft AR, Sheu FS, Ong SH (2007) New insights into image processing of cortical blood flow monitors using laser speckle imaging. IEEE Trans Med Imaging 26:833–842

    Article  PubMed  Google Scholar 

  • Lecrux C, Hamel E (2016) Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B. https://doi.org/10.1098/rstb.2015.0350

    Article  Google Scholar 

  • Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Levesque M, Plaisier F, Shmuel A, Cauli B, Hamel E (2011) Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J Neurosci 31:9836–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E (2017) Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation. J Neurosci 37:1518–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ES, Yoon JH, Choi J, Andika FR, Lee T, Jeong Y (2017a) A mouse model of subcortical vascular dementia reflecting degeneration of cerebral white matter and microcirculation. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X17736963

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Jung S, Lee P, Jeong Y (2017b) Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model. Exp Neurol 296:89–98

    Article  PubMed  Google Scholar 

  • Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41:26–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberti WA, Perkins LN, Leman DP, Gardner TJ (2017) An open source, wireless capable miniature microscope system. J Neural Eng 14:045001

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li C, Falck JR, Roman RJ, Harder DR, Koehler RC (2008) Interaction of nitric oxide, 20-HETE, and EETs during functional hyperemia in whisker barrel cortex. Am J Physiol Heart Circ Physiol 295:H619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liwnicz BH, Leach JL, Yeh HS, Privitera M (1990) Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery 26:409–420

    Article  CAS  PubMed  Google Scholar 

  • Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HD, Chen G, Cai J, Roe AW (2017) Intrinsic signal optical imaging of visual brain activity: tracking of fast cortical dynamics. Neuroimage 148:160–168

    Article  PubMed  Google Scholar 

  • Luan L, Sullender CT, Li X, Zhao Z, Zhu H, Wei X, Xie C, Dunn AK (2018) Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J Neurosci Methods 295:68–76

    Article  PubMed  Google Scholar 

  • Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, Pavenstadt H, Rovas A, Hesse B, Goerge T, Kumpers P (2017) Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 113:671–680

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EM (2016) Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B 371:1705

    Article  Google Scholar 

  • Martin C (2014) Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masamoto K, Unekawa M, Watanabe T, Toriumi H, Takuwa H, Kawaguchi H, Kanno I, Matsui K, Tanaka KF, Tomita Y, Suzuki N (2015) Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci Rep 5:11455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokbul MI (2017) Optical coherence tomography: basic concepts and applications in neuroscience research. J Med Eng 2017:3409327

    Google Scholar 

  • Packer AM, Russell LE, Dalgleish HW, Hausser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Sun W, Cui M (2015) High-resolution in vivo imaging of mouse brain through the intact skull. Proc Natl Acad Sci USA 112:9236–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Kong L, Zhou Y, Cui M (2017) Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods 14:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponticorvo A, Dunn AK (2010) How to build a laser speckle contrast imaging (LSCI) system to monitor blood flow. J Vis Exp 45:2004

    Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Ramirez J, Berezuk C, McNeely AA, Gao F, McLaurin J, Black SE (2016) Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol 36:289–299

    Article  CAS  PubMed  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards LM, Kazmi SM, Davis JL, Olin KE, Dunn AK (2013) Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomed Opt Express 4:2269–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Richner TJ, Baumgartner R, Brodnick SK, Azimipour M, Krugner-Higby LA, Eliceiri KW, Williams JC, Pashaie R (2015) Patterned optogenetic modulation of neurovascular and metabolic signals. J Cereb Blood Flow Metab 35:140–147

    Article  CAS  PubMed  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117

    Google Scholar 

  • Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932

    Article  CAS  PubMed  Google Scholar 

  • Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Devor A, Lo EH, Vinogradov SA, Boas DA (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110

    Article  PubMed  Google Scholar 

  • Serov A, Lasser T (2005) High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor. Opt Express 13:6416–6428

    Article  PubMed  Google Scholar 

  • Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32:1277–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin P, Choi W, Joo J, Oh WY (2018) Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X18773432

    Article  PubMed  PubMed Central  Google Scholar 

  • Silasi G, Xiao D, Vanni MP, Chen AC, Murphy TH (2016) Intact skull chronic windows for mesoscopic wide-field imaging in awake mice. J Neurosci Methods 267:141–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife 5:e14472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan VJ, Atochin DN, Radhakrishnan H, Jiang JY, Ruvinskaya S, Wu W, Barry S, Cable AE, Ayata C, Huang PL, Boas DA (2011) Optical coherence tomography for the quantitative study of cerebrovascular physiology. J Cereb Blood Flow Metab 31:1339–1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh M, Shariff S, Bahar S, Mehta AD, Schwartz TH (2005) Intrinsic optical signal imaging of normal and abnormal physiology in animals and humans—seeing the invisible. Clin Neurosurg 52:135–149

    PubMed  Google Scholar 

  • Sulis Sato S, Artoni P, Landi S, Cozzolino O, Parra R, Pracucci E, Trovato F, Szczurkowska J, Luin S, Arosio D, Beltram F, Cancedda L, Kaila K, Ratto GM (2017) Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc Natl Acad Sci USA 114:E8770–E8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland BA, Rabie T, Buchan AM (2014) Laser Doppler flowmetry to measure changes in cerebral blood flow. Methods Mol Biol 1135:237–248

    Article  PubMed  Google Scholar 

  • Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21:1318–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalay G, Judak L, Katona G, Ocsai K, Juhasz G, Veress M, Szadai Z, Feher A, Tompa T, Chiovini B, Maak P, Rozsa B (2016) Fast 3D imaging of spine, dendritic, and neuronal assemblies in behaving animals. Neuron 92:723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantini S, Fulop GA, Kiss T, Farkas E, Zolei-Szenasi D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging. Geroscience 39:465–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Cancel LM (2016) The glycocalyx and its significance in human medicine. J Intern Med 280:97–113

    Article  CAS  PubMed  Google Scholar 

  • Terasaki Y, Liu Y, Hayakawa K, Pham LD, Lo EH, Ji X, Arai K (2014) Mechanisms of neurovascular dysfunction in acute ischemic brain. Curr Med Chem 21:2035–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurley K, Ayaz A (2017) Virtual reality systems for rodents. Curr Zool 63:109–119

    Article  PubMed  Google Scholar 

  • Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin. Function and Role. Front Cell Neurosci 10:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlirova H, Kilic K, Tian P, Thunemann M, Desjardins M, Saisan PA, Sakadzic S, Ness TV, Mateo C, Cheng Q, Weldy KL, Razoux F, Vandenberghe M, Cremonesi JA, Ferri CG, Nizar K, Sridhar VB, Steed TC, Abashin M, Fainman Y, Masliah E, Djurovic S, Andreassen OA, Silva GA, Boas DA, Kleinfeld D, Buxton RB, Einevoll GT, Dale AM, Devor A (2016) Cell type specificity of neurovascular coupling in cerebral cortex. Elife. https://doi.org/10.7554/eLife.14315

    Article  PubMed  PubMed Central  Google Scholar 

  • Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2017) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226

    Article  CAS  PubMed  Google Scholar 

  • Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME, Mumm J, Betzig E (2014) Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods 11:625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winship IR (2014) Laser speckle contrast imaging to measure changes in cerebral blood flow. Methods Mol Biol 1135:223–235

    Article  PubMed  Google Scholar 

  • Wright PW, Brier LM, Bauer AQ, Baxter GA, Kraft AW, Reisman MD, Bice AR, Snyder AZ, Lee JM, Culver JP (2017) Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice. PLoS ONE 12:e0185759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Kanekiyo T (2017) Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18:1965

    Article  CAS  PubMed Central  Google Scholar 

  • Yoon HJ, Lee ES, Kang M, Jeong Y, Park JH (2015) In vivo multi-photon luminescence imaging of cerebral vasculature and blood–brain barrier integrity using gold nanoparticles. J Mater Chem B 3:2935–2938

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee ES, Jeong Y (2017) In vivo imaging of the cerebral endothelial glycocalyx in mice. J Vasc Res 54:59–67

    Article  CAS  PubMed  Google Scholar 

  • Zakharov P, Volker AC, Wyss MT, Haiss F, Calcinaghi N, Zunzunegui C, Buck A, Scheffold F, Weber B (2009) Dynamic laser speckle imaging of cerebral blood flow. Opt Express 17:13904–13917

    Article  CAS  PubMed  Google Scholar 

  • Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142

    Article  CAS  PubMed  Google Scholar 

  • Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF, Grafe MR, Woltjer RL, Kaye J, Iliff JJ (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91–99

    Article  PubMed  Google Scholar 

  • Zhu D, Wang Y, Singh I, Bell RD, Deane R, Zhong Z, Sagare A, Winkler EA, Zlokovic BV (2010) Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115:4963–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S (2017) Glycocalyx degradation leads to blood–brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab 38:1979–1992

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A special thanks to Ms. Heeyon Jeong who helped us to increase the quality of Fig. 1 and supplementary Fig. 1. This research was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3C7A1913844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jeong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JH., Jeong, Y. In vivo imaging for neurovascular disease research. Arch. Pharm. Res. 42, 263–273 (2019). https://doi.org/10.1007/s12272-019-01128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01128-x

Keywords

Navigation